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1. PROJECT SUMMARY

This project is intended to research and develop new nonlinear methodologies for the control and

stability analysis of high-performance, high angle-of-attack aircraft such as HARV (F18). The present

report summarizes past research (reported in our Phase 1, 2, and 3 progress reports) and provides more

details of final Phase 3 research.

While research emphasis is on nonlinear control, other tasks such as associated model

development, system identification, stability analysis, and simulation are performed in some detail as

well. Table 1-1 provides an overview of various models that have been investigated for different

purposes such as an approximate model reference for control adaptation, as well as another model for

accurate rigid-body longitudinal motion. Only a very cursory analysis has been made relative to type 8

(flexible body dynamics). Standard nonlinear longitudinal airframe dynamics (type 7) with the available

modified F18 stability derivatives, thrust vectoring, actuator dynamics, and control constraints are utilized

for simulated flight evaluation of derived controller performance in all cases studied here.

Past research indicates that nonlinear control can be utilized effectively to control high-perfor-

mance aircraft such as HARV (F 18) for rapid maneuvers with large changes in angle of attack (or) --

cases where classical linear feedback control (without gain scheduling) can yield poor performance or

even instability. Even nonlinear feedback controllers that were generated in conjunction with a linear

model reference (and without multiple regression terms) failed for certain high-c_ maneuvers but with

added nonlinear reference terms they lead to successful control. More recent results, however, indicate

that even the nonlinear feedback controller generated in conjunction with a higher-order (more delay

terms) linear model-reference is quite effective for the cases considered in Section 6. On the other hand,

it is shown that further performance gains may be realized with the addition of bilinear and higher

nonlinear terms in the model reference for control adaptation as for previous studies.

As a benchmark for judging controller performance, and also as a basis for future designs and

for pilot-manipulated control, optimal control is studied in some detail, as summarized in Section 3. The

derived algorithms for minimum-time control and for minimum quadratic state-error control both consider

the full nonlinear dynamics with applicable control (magnitude and rate) constraints. The software has

been generated in C language and can be applied virtually to any aircraft control or other plant.

The time-optimal control from an initial trim state (at 15,000 ft altitude and mach 0.3) with

ot(t0) = 5 ° to ot(tf) = 60 °, with thrust T(t 0) = 3,000 pounds and T(tf) = 18,000 pounds, takes place

about 1.8 see without any efforts to hold a(t) for t > tf. On the other hand, a quadratic-performance

controller completes the maneuver in about 2.5 see with a normal peak acceleration (nz) of about 2.5 g
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Table 1-1. Aircraft Models

1.

2.

3.

4.

5.

6.

7.

8.

Type Purpose

Linear perturbations de-
sired a, M, h*

Gain scheduled (non-

linear function of a)

from 1

Volterra seriest

a) at reference states

b) general case

Bilinear system

a) continuous

b) BARMA

Polynomial time series

Neural network

Nonlinear ordinary dif-

fcrcntial equation model

Nonlinear partialdiffer-

enfial equationsmodd

Local control,check of nonlinearsystem,

applicationof well developed linearcon-

trolmethodologies

stability

Gain-scheduled adaptive control based on

well developed methodologies

Simplifieddescription of complex system

Approximate stability

Nonlinear adaptive control via cross-corre-

lation and/or _ priori dynamic structure

Stability approximation

Simplified dynamic descriptionofcomplex

system

Nonlinear adaptive control via model

reference identification (NLMRAC)

Stabilityapproximation

Simplifieddynamic description

Potential application to adaptive control

Accurate approximation to fast large ma-

neuvers for "final" design and simulation

Stability

Allows the treatment of distributed exter-

nal stresses and local pressures as well as
internal stresses and deformations

Remarks/Limitations

Only validfor small maneuvers

Specialcase of types 2-5

May have stabilityproblems with
small number of reference states

and/or largefastmaneuvers

Non-ozthogonalseries approximation

Sufficiency of 2 or 3 kernels

Large computation time for adapta-
tion

Large computation time

Bilinetdzing controllers may be

more practicalthan linearizing one.s

Polynomial approximation may be
more accurate but more time con-

suming than linear or bilincar ap-

proximation

Probably lessaccurate than 4 or 5

for a given data set but accuracy

may be more robust outside the
availabledataset

Neglects flexa_le modes and other

complications

Computations are time consuming

Overall model complexity

Allows one to treat flutter and dis-

tributed controlstrategies, etc.

*o_is angle of attack, M math number, and h altitude

tWiener seriescan be used fororthogonalrepresentation
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and a qmax (maximum pitch rate) of about 60°/see. The _xresponse is quite smooth with less than 10%

overshoot and a rise-time of about 1.8 see (see Section 3.4).

All the high-performance controllers studied seem to mimic the optimal control policy by

operating in saturation for most of the trajectory. Switching times of the stabilator and the thrust vector

motion is somewhat critical as generated by the appropriate feedback.

The stringent requirement to control ot and not allow drastic changes in pitch for t > tf suggests

the use of a terminal sliding-mode control which is studied for the whole maneuver in Section 7. While

the results are preliminary, the method shows promise.

The adaptive controls studied in Section 6 perform very well and only a little slower than

optimum. It is expected that further investigation of practical nonlinear feedback control will lead to an

even simpler and better closed loop system. Then effectiveness for trajectory following in general needs

to be studied.

The neural-net controller which is trained off-line on the simulated optimal policies perform quite

effectively despite the preliminary nature of derivation. For example, such neural-net generated policy

controls HARV (F18) from a a= 5 ° trim state to 70 ° in about 4.5 see. It should be realized that, in a

general sense, neural-net-based controllers typically are a form of nonlinear adaptive controllers with the

neural-net an appropriate nonlinear model consisting of layers of adjustable parameters with their outputs

summed and processed through nonlinear limiting functions such as sigmoidal ones. The other adaptive

controllers here are based on polynomial (with linearity a special case) discrete approximations with

varying degrees of lag terms. Project publications (in addition to the semiannual progress reports) are

listed in Appendix A along with research contributors.
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2. INTRODUCTION

Nonlinear control of high-performance aircraft such as HARV (F18) has been demonstrated with

accurate computer simulations to be effective by this project as well as others such as Ostroff [2.1] and

Buffington, Sparks, and Banda [2.2]. The difference between our controllers and the latter two is that

the latter generate the nonlinear feedback gains to account for certain (assumed known) nonlinear plant

dynamics. Reference [2.1] utilizes numerous trim-state linearization studies to determine the required

gains in conjunction with a flight-test proven PIF controller which is able to successfully control HARV

from a(t o) = 5 ° trim to about 60* in about 5 see. Reference [2.2] is based on a linear Ha, design in

conjunction with trim-state linearized dynamics and an appropriate nonlinear gain scheduled according

to dynamic pressure variation. The latter study only considers a maximum change from a(t o) = 10 ° to

¢x = 20 ° in about 3 see with a rise time of 1 see, qmax - 14°/see, and nz - 1.5 g. While neither of

the latter two are nearly minimum-time maneuvers as demonstrated here, they probably represent the best

controllers based primarily on linear design methodology in conjtmction with somewhat ad-hoc nonlinear

correction.

2.1

[2.1]

[2.21
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3. OPTIMAL CONTROL

3.1. General Concept

This section discusses research on optimal control of longitudinal aircraft dynamics. Since the

objective of the project is to develop high performance control algorithms, it is natural to investigate the

possibility of obtaining the highest possible performance -- through optimal control theory. While

optimal control may be useful in its own right, the emphasis here is in using the optimal control as a

yardstick to judge our more practical designs and as a base for their synthesis such as by neural nets.

Understanding how the formulation of the optimal control problem affects the behavior of optimally

controlled aircraft is crucial to a successful application. In this work two most commonly used

performance criteria are investigated: minimum time performance index and integral quadratic

performance index.

Even if the correspondence between the problem formulation and actual optimal performance is

well understood, still practical application of optimal control theory sometimes may seem questionable.

Most significantly, optimal control depends upon exact knowledge of the dynamics of the controlled plant.

While this assumption may be quite realistic in some applications, parameter uncertainty arises for high

performance aircraft due to stability derivative uncertainty, nonuniform (geometrically) fluid flow, etc.

Also, for a nonlinear system, the actual calculation of the optimal controls usually involves an iterative

numerical algorithm. Even in case of a relatively uncomplicated model, as longitudinal aircraft dynamics,

on-line optimization may require computational capabilities of the order precluding any realistic practical

applications. Furthermore, unlike for linear systems, optimal feedback synthesis for a nonlinear plant

may be almost impossible. There are numerous optimization techniques available that solve open-loop

optimal control problems efficiently. However, there are few methods to solve the closed-loop synthesis

problem. Theoretically, the very existence of a unique optimal feedback is not even certain for some

nonlinear systems [3.6]. These three points make one raise a question: If the available aircraft model

is highly uncertain and feedback control policy is sought that must be implementable in real-time using

an on-board computer is it at all logical to investigate optimal control? It is argued here that in spite of

those doubts the study of optimal controls can answer important questions and be utilized in the design

of feedback controllers.

First of all, optimal trajectories provide the upper bound for the performance possible achieved

by the investigated aircraft. Since the solution of the optimization problem is obtained with full and exact

information about the plant dynamics, no other control algorithm can possibly result in better performance

in terms of a particular criterion. Thus the optimal trajectories can serve as benchmark tests for feedback

controllers developed using other design methodologies. With the limit of performance available, it is
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easier to assess the degree of improvement of one control scheme over another. This alone seems to be

an objective important enough to justify the investigations that will follow.

Second, optimal trajectories demonstrate what type of control actions are required to achieve high

performance. In particular, optimality is often achieved with extremal values of control signals. Current

practice in aircraft control design is to use gain scheduling of linear controllers, and often the point is

made of avoiding the saturation of actuators (e.g. [3.4]). This is motivated by the fact that saturation

results in loss of linearity of the controller and invalidates the theory underlying the design. The issue

emphasized here is that, since the aircraft dynamics during large maneuvers can hardly be described by

a linear model, the struggle to maintain linearity of the controller is somewhat unnecessary. As it is

demonstrated below, almost always maximum admissible control effort is required for both time-optimal

control and integral-quadratic criterion minimization. Thus, to utilize existing control capabilities fully

to their limits, it is necessary to use nonlinear control algorithms, which take into account limits of

control signals and of their change rates. Investigations of optimal open-loop trajectories may also answer

the questions which of those constraints are most critical for which types of maneuvers. This may

provide some guidelines for the designers of the actual aircraft about possible ways of enhancing optimal

aircrafc performance.

Third, open-loop generated optimal trajectories may be used for synthesis of feedback controllers.

One such possibility, discussed in detail in Section 4, is to approximate optimal feedback mapping using

a number of optimal trajectories as learning data used for nonlinear function fitting. A particular

implementation of such approximation proposed in this report is by artificial neural networks. Another

way to utilize information about optimal trajectories is to use them as reference tracking signals in output

feedback controllers. Formation of reference signal out of command signal is one of the major difficulties

in model reference control. Common practice is to use linear reference models. As discussed above this

may lead to unnecessarily conservative performance, particularly close to the target value of the output.

A solution to this problem may be the utilization of optimal trajectory as the demanding, yet possible to

track, reference signal. Difficulty with on-line generation of an optimal output trajectory may be

circumvented by some kind of interpolation between a number of optimal trajectories, pre-calculated off-

line for different command signals. Again, the artificial neural network approach is one possible

implementation of this idea.

To investigate the issues raised above a large number of optimal trajectories was calculated in the

open-loop mode using numerical optimization techniques. The following sections discuss in detail optimal

control problems solved, the actual algorithms used for solution, and the results of simulations.
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3.2. Methodology

The optimal control calculations were performed for the fourth-order nonlinear model of

longitudinal dynamics augmented with dynamics of three actuators including their saturation. Two types

of optimal control problems are solved, time-optimal problem and integral quadratic performance index

minimization, with controlled output variable being either the angle of attack or pitch rate. The following

subsections give precise problem statements and discuss the numerical methods used.

3.2.1. Aircraft Model

The model of the aircraft used is the full nonlinear longitudinal dynamics of a modified F 18

(HARV), described in Appendix B. The general form of the models is:

dx/dt - f(x,u) (3.1)

with state vector x = [a, q, 0, v] T, control vector u = [5h, T M, _Sv]T, _ -- angle of attack, q -- pitch

rate, 0 -- pitch angle, v -- total velocity, _5h -- elevator angle, TM -- thrust magnitude, and _v -- angle

of thrust vector. In practice, thrust magnitude is controlled typically by the pilot through the throttle,

so generally it should be treated as a given, time-varying parameter, rather than a feedback control signal.

Here, the objective is to obtain the performance limits for the aircraft and to manipulate T M optimally.

Control signals are assumed to be subject to the following constraints:

-24° < _ < i0o

3,000 Ibs < TM _< 18,000 Ibs

-20° _< c5v _< 20 °

(3.2)

Additionally, model (3.1) was extended with dynamics of the actuators for 5h, TM, and _5v. Dynamics

of T M is assumed to be linear of the first order with time constant Is. Time constants for 6h and 6v are

1/30s, but there are constraints for their rates of change: Id/_h/dt I _< 40°/S, [d_/dtl -< 40°/S. This

results in nonlinear dynamics model for _h and 6v. The saturation of rate of change is modelled in a

smooth way to make the gradient calculations in optimization methods possible. The actuators were

modelled as:

d_/dt = g(-308 h + 30uh)

=
dTM/dt = -T M + UTM

(3.3)
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with smooth saturation function g

40-exp(-x+39) if x > 39
g(z) = z if-39 -< x < 39

-40 + exp(x+39) if x < -39

(3.4)

Finally the obtained model is of the seventh order

dx'/dt = f'(x',u') (3.5)

with the augmented state x' = [x T, uT]T and with the control variables being the demand signals to the

actuators u' = [U6h, UTM, u_rv]T. Constraints (3.2) are now defined for u', but because of the form of

(3.3-3.4) will be also satisfied for actual control signals u.

For the purpose of study of optimal control, equilibria of model (3.5) were investigated. Since

in equilibrium u = u', it is possible to omit three equations (3.3) and deal only with the fourth order

system (3.1). Because thrust vectoring is usually applied only during maneuvers, _v in equilibrium is

assumed to be zero. In such ease the set of equilibria of (3.1) is parametrized by values ofT M and _h

-- it is a two-dimensional manifold in four-dimensional state space. Among all equilibria there are trim

conditions, e.g., specific points in which a = 0. For each thrust magnitude TM there is only one or two

such trim conditions, and all other attainable equilibria of (3.1) correspond to ascending or descending

flight. For higher T M it is possible to trim the aircraft at higher _ -- for maximal thrust of 18,000 lbs

maximal trimmed _ is close to 35 °. For angles of attack or pitch angles larger than 35 ° there axe

equilibria of (3.1) but with non-zero climbing angle.

3.2.2. Time-Optimal Control

The control problem is as follows: given initial state x ° and desired final state x f minimize

Jto = min{tf" x_t_ = x f}
(3.6)

with respect to control signal u(t), 0 < t _< tf. In what follows the plant considered is (3.5) even though

primes axe omitted to simplify notation. The minimal time problem is solved in hierarchical manner.

The first step is the problem of reaching x f from x ° in fixed time tf. To solve this an auxiliary

performance criterion Jaux is minimized with respect to control signals:
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Jaux(t :[ i(xi(tf) (3.7)

Here Pi are appropriate weights playing the role of scaling coefficients. Also, setting some of Pi to zero

allows us to specify the desired final set as a hyperplane rather than a point. This may be the case if

values of only some of the state variables are actually of interest. If the desired state x f (or, more

generally the hyperplane specified by xf and p) is reachable from x0 in time tf then the minimum of (3.7)

opt fis Jaux(t ) = 0. Therefore the actual time optimal problem (3.6) can be reformulated as a search for:

t opt= min{t f" Jau°P:(tf) = 0}
(3.8)

Minimization of (3.7) is performed using an iterative gradient scheme. The key element of the

procedure is the calculation of the gradient of Jaux with respect to control signals. This involves solving

at each step a system of adjoint equations

dT//dt =

with final conditions

_(Of(x, u/&x)T (3.9)

Then the gradient can be calculated according to:

(aJaux/_gu)(t) = ((aT/19u)T, )(t)
(3.11)

For derivation of these sensitivity calculations see [3.7]. The gradient calculated according to (3.11) is

used for determination of change direction in which minimum search is performed. In this study a

conjugate gradient method (see e.g., [3.2]) is used for this purpose. Simplified flow of information

during each iteration of minimization of (3.7) is depicted diagrammatically on Fig. 3.1. The most time-

consuming element of each iteration is the directional search which consists of repeated simulation of the

model with control signal u(t) + 3'v(t), where 3' is the search step. Implementation issues concerning

directional search, control discretization and incorporating constraints for control values are discussed in

Section 3.2.4.
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x(O)

u(t) I

• simulate

plant for
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ult)

calculate_•gradient

find new Iv(t) minimize J

search _-----•I w.r.t, u --

direction lm_lin dir. v

new u(t)

Figure 3.1. Flow of Information for Minimization of (3.7)

With the method of minimization of (3.7) available, determination of optimal time (3.8) is a

simple one dimensional optimization problem. In this study it is solved using a bisection method which

for our purposes proved to be effective enough.

An alternative, and often more numerically efficient, algorithm for minimization of (3.7) is the

switching time variation method [3.3]. It seeks the solution in form of bang-bang controls with the

independent variables being the switching times. If optimal control is indeed of bang-bang type with

finitely many switchings then the resulting optimization problem is usually low-dimensional and converges

much faster than optimization with respect to control values. If the time optimal control trajectory

contains a singular arc (an interval with control values not on the constraints) the switching time variation

method is still applicable, since for plants affine in control any control trajectory can be approximated

arbitrarily closely with bang-bang control [3.1]. Technically (3.3) is not affine in control, but is strictly

increasing and by trivial transformation may be made affine in a modified control signal with one-to-one

correspondence to the actual control signal. Unfortunately, in a situation with a singular control arc, the

method results in increasing number of switchings and quite slow convergence. On the other hand

optimization with respect to control values, rather than switching times is more general and also suitable

for integral quadratic performance criterion optimization. Therefore application of this method made it

possible to use the same basic optimization module for different performance criteria.

3.2.3. Optimal Integral Performance Criterion Control

Control trajectories resulting from solution of the time-optimal problem often display large over-

shoots which might be unacceptable from the designer's point of view. Also they include no information

as to how to keep the final state. In many time-optimal control applications this issue is not relevant, as,

e.g., in case of missile guidance. If, however, the control task is to change the angle of attack or pitch

angle rapidly it is expected that the angle should be kept at the same level for at least some finite time.

The problem with terminal end control is most apparent if only some of Pi are non-zero -- i.e., if values

of only some of the states are of interest. Then the time-optimal movement towards the target hyperplane
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may result in such a final state for which no admissible control exists which would keep the state on the

hyperplane. This difficulty can be overcome by using integral performance criterion:

A typical choice of the integrand is a quadratic error function

fo(x,xf, t) = _. [pi(xi(t)-xif) 2]
(3.13)

If the final state xf is an equilibrium corresponding to an admissible value of control then intuitively one

may obtain the steady state control by minimization of (3.12-13) with tf --, _. Even if xf is not an

equilibrium, still optimization with finite but large t f yields a control which keeps the state close to the

desired value. If the final set is not a point but a hyperplane (some of Pi are zero), minimization of

(3.12-13) may result in controls keeping particular state coordinates exactly at desired values. This is

the case for the control problems discussed in this study.

Criterion (3.12) is minimized in an iterative scheme, whose main dements are: calculation of

current value of the criterion, calculation of its gradient with respect to the control signal, determination

of the search direction and directional minimization. To find the gradient it is necessary to solve

backwards in time the system of adjoint equations:

d_/dt = -(#f(x,u)/ax) r _ + (#fo(x)/ax) r (3.14)

with final conditions

_/i(t f)= 0. (3.15)

Then the gradient of J with respect to control signal u is calculated according to formula (3.11). The rest

of the optimization process is also similar to that discussed in Section 3.2.2 and depicted on Fig. 3.1.

3.2.4. Implementation

The actual numerical optimization of (3.7) and (3.12) in this study was performed in discrete time

-- with control signal piecewise constant on intervals with length A (except possibly for the last interval,

which may be shorter if tf is not commensurate with A). Discrete time approximation allows for

utilization of all the powerful machinery of finite dimensional optimization. The infinite dimensional

control signal u(t), 0 _< t ___tf is replaced with finite dimensional vector u = [u 1, u 2, ..., UKf_l]T
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0 -< k < K f, where K f is the smallest integer such that tf _< KfA. Consequently, the gradient of the

performance criterion with respect to control signal is approximated by a finite dimensional vector g

whose elements are calculated according to:

gk = aJaux/aUk = dt (3.16)

Then the directional minimum search is performed in direction v determined by a conjugate gradient

algorithm. Here a particular version of that algorithm is adopted from [3.5], which is robust with respect

to inaccurate direction of search. This allows us to limit the number of calculations of the performance

criterion (3.7) or (3.12) in each iteration.

A pure conjugate gradient algorithm is suitable only for unconstrained problems -- in this case

with no limits on control values. With constrained controls the minimum in direction v may be infeasible.

This poses no difficulties in the directional search -- in fact it is easier to find a minimum with a

constrained search interval. However the resulting optimal step cannot be used for determination of the

next search direction if the minimum lies on one of the interval's ends. This problem is solved as

follows. After calculation of (3.11) the set of active constraints is calculated: the constraint is active if

gk < 0 and u k = urea x or if gk > 0 and uk = umi n. Then the whole minimization is done only with

respect to controls with no active constraints -- i.e., elements of g corresponding to active constraints

are set to zero. If some of the active constraints become non-active or vice-versa, then the conjugate

gradient algorithm is re-initialized with the steepest descent direction as the initial search direction. The

same is done if in some iteration the search direction v becomes infeasible. As a result the conjugate

gradient method works effectively as if no constraints were present and the formulae for determination

of search direction are valid. Hitting or leaving any of the control constraints causes change of the space

in which the minimization is performed. The method used may be viewed as a projection method ([3.2])

in which currently active constraints are treated as equality constraints and the others are ignored. Due

to the extremely simple structure of constraints (3.2) the projection of the gradient amounts to putting

some of the gradient elements to zero. Also, since the constraints are linear, they are satisfied for any

control signal along the search line.

The directional minimization implemented in this study uses a combination of two-point gradient-

based parabolic fit with three-point non-gradient parabolic fit. If the calculated vertex of the fitted

parabola results in controls exceeding the constraints, a heuristic bisection-based search for minimum in

the interval is performed. The number of criterion value calculations (i.e. simulations of the model) in

each directional search was limited at cost of accuracy.
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Theprecedingdiscussion, for sake of clarity, was limited to the scalar control case. Extension

to more control signals (such as the case of aircraft control) is straightforward. The control vector, with

respect to which the minimization is performed is now u = [utl),...,utM),u2,...,u_M-1),...,ul__l,...,

u___t] T, where M is the number of control signals. The gradient of the performance criterion is composed

of M vectors g = [g(1)T,...,gfM)T]T, each of which is calculated according to (3.16) with u being

replaced by appropriate control u (i).

For the time-optimal problem the minimization of (3.7) is terminated when Jaux -< e, where e

represents acceptable deviation from desired values, or, if for given tf it is not possible to reach xf, when

the norm of gradient of J becomes small enough. For the integral-quality-criterion problem, only that

second stop criterion was used.

3.3. Simulation

For the aircraft model a series of numerical optimization experiments was performed for both

time-optimal and quadratic integral criterion problems with controlled variable being either angle of attack

a or pitch angle 0. The original objective for the time-optimal problem was to calculate the minimum-

time transition of the plant's state from one point (assuming it is an equilibrium of (3.1)) to some other

specified point (preferably also an equilibrium). For the control of _ (or 0) the procedure would be to

find an equilibrium corresponding to a desired value of o_ (or 0) and then calculate the time-optimal

trajectory. Unfortunately this turned out to be too difficult a problem with given control limits, and it

was impossible to find appropriate controls moving the state to such a desired equilibrium in a reasonable

time. Besides that, equilibria corresponding to high values of _ are characterized by negative values of

path angle, which is not exactly the desired state. Therefore a modified control problem is solved, in

which the task is only to reach a given value of _, (or 0) and q = 0. This corresponds to P3 = P4 = 0

(or Pl = P4 = 0) in (3.10) and to the target set being a two-dimensional hyperplane rather than a point

in R 4. This turned out to be easily solvable; however, specifying final values of three, instead of two,

state variables caused serious problems with convergence of the minimization process due to a physical

lack of aircraft controllability with present control signal constraints (particularly thrust).

Typical time-optimal trajectories are displayed on Figs. 3.2-3.6. The initial condition is the

trimmed flight with Trn = 3,000 lbs at 0.3 maeh and 15,000 ft. The corresponding pitch angle is close

to 5 °. The target is q = 0 and 0 = 10 °, 30", 50", 70", so the simulated maneuver corresponds to

aiming the nose of the aircraft in the desired direction. The dashed lines on control plots correspond to

command signals fed to actuators while the solid lines are the actuators' outputs, i.e. the control signals

proper. It may be observed that the optimal command signal fed to the actuators is not unique because

3-9



¢1
e=

¢_

¢D

10

8

6

4

2

0
0

10

8

6

4

2

' ' 0160.2 0.4

time [s]

0
0 ' ' 0160.2 0.4

time [s]

15

10

_' 5

0
).8 0

470

468

466

464

462

460
0.8 0

i , |

0.2 0.4 0.6

time [s]

0.8

' ' 0160.2 0.4

time [s]

0.8

¢atj

E
0
e-

1.5

1

0.5

0

-0.5
0 0.2 0.4 0.6

time Is]

IX)

o
O

0.8

10

0

-10

-20 -

0 0.2

| . i

r ...........

........... I

I I

0.4 0.6

time [s]

2

"_ 1.5

0.5

0
0

xl04
i i J

t ...........

, I ,

0.2 0.4 0.6

time Is]

O

20
i

-20 -

0.8 0 0.2 0.4 0 6

time [s]

Figure 3.2. Time-optimal control to 0 = 10" and q = 0*Is
Initial condition - trim corresponding to thrust 3,000

0.8

0.8



30 , , 40[ , ,

3O
'_ 2O

_ 20

_ lO

,°°
I !

0.5 I 0 0.5 I

time Is] lime Is]

Q.2

e-.

30 470

20

10

I

0 0'.5 1

460

450

o 44Oo o'.5 ;
arne [s] time Is]

O
e-.

3

2

1

0

-1
0

2 x104

"_i 1.510.5

0
0

t_.

10

0

-10

-20

0
I

015 1

time [s] time [s]

I !

0.5 1

i i

20

i °
-20

o'.5 ; o o'.5
time [s] time Is]

Figure 3.3. Time-optimal control to 0 = 30* and q = 0*Is

Initial condition - trim corresponding to thrust 3,000

| i

I

1



t-

50

40

30

20

10

50

40

20

10

0
0

0
0

i i i

20

o'.5 i _'.5 o
time [s]

i I I0 5 1 1.5

time [s]

460

.._ 440

420

time [s]

s i i

o'.5 ; f.5
lime [s]

0

3

2

1

0

-1
0

1.5

1

0.5

0
0

-10

2oI ,
0 5 1 1.5 0 0.5 1 1.5

time [s] time [s]

xlO 4
i ! i !

................................... 2O

-20
!o'.5 i _.5

time [s] time [s]

Figure 3.4. Time-optimal control to 0 = 50* and q = 0*/s

Initial condition - trim corresponding to thrust 3,000

Io o'.5 i 1.5



OO

t_
¢..

i i i

60

40

2O

0
0 0.5 1 1.5 2

time [s]

i.,..a

60

40

20

0
0 0.5 1 1.5

time [s]

60

40

20

0
0

I I I

0.5 1 1.5

time Is]

460

440

•_' 420
,._
> 400

380
2 0

I

0.5 2

|

I I

1 1.5

time [s]

_5

O

2

I

0

i 1.5

1

0.5

-1
0

I I I

0.5 1 1.5

time Is]

2 xl04 , , ,

....................................

2

0
0

t)

10

0

-10

-20

0

20

0

i-..*--

I I
---_ I I

i I I
I I I
I I I
| ¢ I

0.5 1 1.5 2

lime [s]

| , J

.... J

_-i !
a i
i i

! I

1 1.5
I I I

0.5 I 1.5 2

time [s] time [s]

Figure 3.5. Time-optimal control to 0 = 70* and q = 0*/s

Initial condition - trim corresponding to thrust 3,000

-20
I

0 0.5 2



e_

_9
-5,

25

20

15

10

5

0
0

80

60

40

20

0
0

I

time [s]

i i J

_ _ 8
time [s]

40

30

,°°
I

8 0 2 4

time [s]

500

400

300

_OOo _ ;
time [s]

8

O

2
-fi

2

0

0

, , , 20 , ,

ojA

_ _ 8 o 2
time [s] time [s]

2 x104

1.5

1

0.5

0
0

, 20

O

t o
-10

, -20

i

i !

I

I

• t| I

2 4 6 8 0 2

time [s] time Is]

Figure 3.6. Quadratic-optd_rnal control for target a = 20.8*
Initial condition - trim corresponding to thrust 3,000

!

6



of the rate limitations on actuators" outputs. Theoretically the nonlinear saturation function g in (3.3) is

monotone increasing, so bang-bang command signals are necessary to obtain the fastest changing control

signals. However, from the practical point of view, g saturates so quickly, that any command signal

differing from current actuator output by more than 2 ° results in the maximal rate of change. Results

displayed on Figs. 3.2-3.5 show that indeed time-optimal change of pitch angle requires bang-bang

control of all three actuators. This substantiates previous intuitive remarks about unsuitability of linear

methods for high-performance control. Optimality requires utilizing the existing control capabilities fully

to their limits, and increasing the speed of actuators is one of the ways to improve maneuverability.

Time-optimal transition to 0 = 70 ° reveals however an apparent singular control arc. This phenomenon

has been generally observed for optimization of maneuvers with high values of angle of attack.

Calculations performed so far suggest that in such situations time-optimal transition to high value of c_

or 0 does not necessarily require bang-bang type of control, at least in the final part of the maneuver.

Normal acceleration plots as well as pitch rate show that those maneuvers are within the desired range.

A series of optimizations of integral quadratic performance criterion (3.12) has also been executed

in different variants. The controlled variable was either a or 0, which corresponds to either P2 = P3 =

P4 = 0 or Pl = P2 = P4 = 0. Attempts to simultaneously regulate values of two or more states were

not successful due to the control (particularly thrust) limitation. The simulations were performed with

initial conditions corresponding to trim flight at T M = 3,000, 10,000 and 18,000 pounds. In this case,

unlike in time-optimal problem, only optimal stabilator/elevator and thrust direction command signals are

calculated. The thrust magnitude is assumed to be increased (or decreased) by the pilot manually to the

prescribed terminal trim. The control horizon is 8s -- a value which, if significantly increased or

decreased, does not affect the shape of optimal trajectories. Typical results for control of ot are shown

on Figs. 3.6-3.13 and for control of 0 on Figs. 3.14-3.17. It is seen that the control is bang-bang in the

initial segment of the trajectory but then smooths out and does not hit the bounds. The ripples on control

trajectories are a result of finite discretization time A. In the numerical optimization variable A was used

to speed-up calculations. If a decrease of A caused no significant decrease in the performance criterion,

larger A was used. Even though the truly optimal control trajectories are much smoother than those

obtained with discretized control, the resulting difference in state trajectories was almost unnoticeable.

Since the controlled variable in all cases locks exactly on the desired value increasing the horizon in a

very large range gives a picture of "semi infinite horizon control."

Figures 3.6-3.9 demonstrate results of quadratic-optimal regulation of c_ with initial trim state for

ot0 = 4.9 ° (15,000 ft altitude and 0.3 math), and desired value of a ranging over 20.8 °, 50 °, 60 ° and

70 °. Rise time ranges from about Is to about 1.Ss with a maximum overshoot less than 10%, after
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whichthecontrolholdstz exactly at its desired value. The maximum normal acceleration peaks at about

2.5g for the most demanding case (d = 70 °) with pitch rate peaking at less than 70°/s in about Is.

Figures 3.10-3.13 demonstrate typical optimal maneuvers for initial conditions corresponding to thrusts

of 10,000 and 18,000 lbs (with angle of attack at trim equal to 20.8 ° and 35.2 °, respectively) with

different values of target o_. Since they start with larger thrust value, consequently the time needed to

reach the desired output level is shorter.

Optimization results for pitch angle regulation were quite similar. Again initial portions of

optimal trajectories are of bang-bang type, and closely resemble the time-optimal case. Figures 3.14-3.16

demonstrate typical results for target Of = 60 ° and 0f = 80 °. Also an example of optimal descent from

0 = 35.2 ° to 0=20.8 ° is shown on Fig. 3.17.

Both the time-optimal and quadratic-criterion-optimal trajectories display certain similarities

between optimal stabilator/elevator angle and thrust angle command signals, lending some credibility to

current practice of scheduling the thrust angle proportionally to elevator angle deflection. This is

particularly true for low angle of attack values. However, for ot > 50 ° these similarities begin to

disappear. Careful examination, e.g., of Figs. 3.8 or 3.11 reveals that for truly high performance

regulation of ,v at high values both control signals have to be determined independently. The same was

found true for regulation of 0. Also in the time-optimal case Fig. 3.5 shows that both angles should be

controlled separately.

3.4. Practical Considerations and Conclusions

Performed numerical optimizations provide a useful set of benchmark tests for rapid changes of

angle of attack of pitch angle of the plane in question. Several characteristic features of optimal

trajectories are revealed: bang-bang type command signals for actuators are required most of the time,

with possible singular arcs for large angles of attack, even in the time-optimal case. This finding

motivates a search for nonlinear control algorithms for rapid maneuvers, as linear controllers cannot

successfully provide bang-bang signals. Also optimal trajectories suggest that separate control of elevator

angle and thrust angle is advisable rather than scheduling of the latter after the former.

For the calculations of this section a computer package was developed for solution of optimal

control problems discussed in Section 3.2. The program was developed for the particular aircraft model,

but due to its modular nature it is possible to substitute any plant model and any performance criterion

of the type (3.12). Written in standard C language the package is essentially portable to any computer

system with a C language compiler supporting ANSI standard. It is proposed that exiting version of

the program, still requiring the author's intervention to change the plant's model, is developed into a
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universal program allowing easy numerical solutions of optimal control problems for any plant,

provided its model is supplied in form of appropriate C language functions.
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4. NEURAL NETWORK CONTROL

4.1. General Concept

The great potential of feedforward artificial neural networks in identification, estimation and

control of dynamical systems have long been recognized, and a multitude of applications have been

proposed [4.4-4.6]. It is generally agreed that, although neural networks cannot be viewed as a universal

panaceum for all design problems, they provide numerous advantages absent in other modeling

techniques. These include automatic learning with no unnecessary assumptions about model sa'ucture,

smooth behavior with good interpolation and extrapolation properties, and possibly very fast parallel

hardware implementations due to simple modular structures of the networks.

Most of the applications of feedforward networks are based on their universal approximating

abilities. Generally, for any finite-dimensional continuous mapping there exists a multilayer feedforward

network, with suitable size and neurons' parameters, that approximates the given mapping arbitrarily

closely. In particular, for control of dynamical systems, any finite dimensional feedback controller can

be implemented by means of neural approximations. This may be advantageous if the form of the

controller is conceptually known, but is not explicitly available in closed form. If only examples of the

desired control actions are available, a neural network may be utilized to learn the unknown underlying

principle from the examples. In particular, it has been suggested in [4.10] that this idea be used for

approximation of optimal feedback using optimal trajectories calculated in open-loop mode.

As remarked in the previous chapter, truly high-performance control calls for some kind of

optimality. Unfortunately, optimal control theory offers mostly tools for calculation of open-loop

controls. While closed loop solutions exist for special cases of linear systems, the design of optimal

feedback controllers in the general nonlinear case is most often untractable. In fact, even the very

existence of optimal feedback mapping is far from being obvious for a nonlinear plant [4.5,4.8]. The

approach used here is to train a neural network on a set of optimal trajectories derived numerically from

the model of the system, under the tacit assumption that the plant is regular enough for the closed-loop

synthesis to be indeed possible. The method from [4.10] is extended here in the sense that a number of

optimal trajectories is calculated not only for different initial conditions, but also for different target

values of the controlled output variable. The numerically obtained optimal trajectories contain

information on how the control signal depends on state variables and on the desired final state. An

artificial neural network is trained to extract this information from the optimal trajectories and then used

in a feedback scheme to generate a sub-optimal policy. The whole synthesis is done off-line and,

therefore, problems with slow learning of large neural networks are not so critical here.
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4.2. Methodology

The neural network controller was trained to approximate quadratic-optimal regulation of angle-

of-attack of the fourth order model of longitudinal dynamics of the modified F18 (HARV) and with all

actuators' dynamics and control constraints. The following subsections give detailed descriptions of the

algorithms used.

4.2.1. Feedforward Neural Networks

The basic element of a multilayered perceptron, or a feedforword neural network, is a multi-

input, single output static processing element, called an artificial neuron. It performs a nonlinear

transformation:

x _ y(x)= a_. w ixi+0) (4.1)

where w i are the neuron's input weights, 0 is the activation threshold, and o is the activation function.

By extending the input vector x with a fictitious element always equal to 1, it is possible to treat the

threshold 0 as a weight associated with a constant input, therefore both w i and 0 are often denoted as the

neuron's weights. The activation function is usually a sigmoid, i.e. is smooth, monotone increasing and

bounded, with a typical example being o(x) = 1/(l+e-X).

A network consists of neurons arranged in two or more "layers," with each neuron of the next

layer having outputs of all neurons of the previous layer as its inputs. The neurons in each layer have

the same number of inputs and outputs. Customarily all the layers besides the output one are called the

hidden layers. The numbers of the neurons in each layer may be different and determine the properties

of the network. The general structure of a network with two hidden layers is depicted on Fig. 4.1.

x(1)--_[_ yl(1) yl(1)--_ D y2(1)°.. • .°. P

x(N)--_ yl(K)--_

x(1)--_..[_-_ yl(2) yl(1)--. D y2(2)
m --.

x(N) yl(K)--_

°°° _ _

x(N)_ yl(K)--_

y2(1)--___
y2(L)--_

y2(1)--__y_
y2(L)--_

.to,

ooo.

y2(1)--_____.

y2(L)--__

Figure 4.1. Structure of a network with two hidden layers.
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A feedforward multilayer network with N inputs, M outputs, K layers and with Ii neurons in the 1-th

hidden layer can be thought of as a nonlinear function f:R N -_ R M, with its i-th output equal

w(1) x )] (4.2)[ ld +_ Wi_)_j m,n n""

The properties of this mapping are determined by the weight vector

[ (1) (1) (K) , (K) _(1) _(K)I T (4.3)
w = LWl,1,...,Wll,N,...,Wl,1 ,...,,._M,IK_I,Vl ,...,v M j

which contains all neurons' weights and thresholds.

4.2.2. Neural Network Approximation of Nonlinear Functions

Most of the applications of feedforward artificial neural networks are based on the approximation

result, which may be stated as follows. Consider a compact subset of R n, U and a continuous function

f: D _ R m. The network architecture considered here is a single hidden layer network with activation

function a of the hidden layer nonconstant and bounded (which is satisfied by sigmoidal functions), and

the activation function of the output layer linear. Then for any e > 0, there exists a (sufficiently large)

network, such that the mapping (4.2) realized by the network approximates the function f in the uniform

sense with error smaller than _, i.e.

sup ,olf"et(x)- f(x)l< (4.4)

This result is stated and proven in [4.2]. The result also holds with the output activation function

monotone increasing and bounded with range (0,1) if the range of approximated function is contained in

m-dimensional rectangle [0,1] m. Since a continuous function is always bounded over a compact set, this

means that a continuous function can also be approximated by a network with sigmoidal outputs if only

proper scaling is used. Similar result holds for approximation in ._ sense -- i.e., for 1 < p < ,o and

e > 0 if f e *_0LI,R m) then there exists a network such that

U [ (f(x)- fnet(x))I p dx < ¢.

Several extensions to this have been introduced. For example approximations in Sobolev spaces

were also considered. If the function to be approximated is m times differentiable over U - fecm(u), and

if the activation function of the hidden layer has bounded derivatives of order up to m, then for • > 0
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it is possible to find a (sufficiently large) neural network approximating not only the function but also all

its derivatives of order up to m with error smaller than e, i.e.

i_ dx1 i/p (4.6)lot] <m JU [ D°_(f(x)- fnet(x)) ]p < ¢ if p < oo

or

max]_ I<mSUpx uID (f(x)- fnet(x))[ < e if p = zo .
(4.7)

The assumption of compact set U can be replaced for p < co if the integration is done with respect to

some finite measure/z.

Approximation results reviewed above are, unfortunately, of purely existential nature, and give

no constructive procedure to find a required approximating network. In particular, size of the network

required to obtain desired accuracy is unknown. Also the way to determine appropriate values of the

network's parameters (the weights of the neurons) is not addressed. Selection of the size of the network

is usually based upon experience or trial and error procedure, although systematic procedures for treating

this problem have been also developed [4.9]. Calculation of appropriate values of the network's weights,

often called training of the network, is discussed in some detail in Subsection 4.2.4.

The approximation capabilities of feedforward networks facilitate their application whenever an

analytically unknown function has to approximated. In that sense neural networks are in fact just one of

many possible methods of nonlinear function fitting, together with polynomials, splines, Walsh functions,

Fourier series, etc. What sets apart neural networks from all those methods is their specific structure --

with many simultaneously operating, identical processing elements, each of which carries only a small

portion of the responsibility for the overall result. As a consequence, they are particularly well suited

for parallel, fast acting, fault resistant hardware implementations. Also, the approximating properties of

neural network approximations are quite advantageous when compared, e.g., with polynomials. Our

previous studies suggest that quality of interpolation by neural networks is very good if the size of the

network is judiciously chosen. The nature of the sigmoid function allows also for extrapolation much

more sensible than in other approximation methods.

4.2.3. Neural Network Sub-Optimal Feedback Synthesis

Since a suitably large feedforward neural network can approximate any continuous function, in

particular it can be used for implementation of a nonlinear control law. A typical situation is when the

control algorithm, which is known to exist, is not given explicitly, but only in form of desired input-
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output behavior of the plant, or as a set of examples of "correct" control actions. In an iterative process

of "learning" the weights of the neurons are adjusted so that some performance criterion is minimized.

A wealth of examples of such applications may be found in a survey paper [4.3]. In this study a

particular control application of neural networks is taken from [4.10].

Consider a finite-dimensional time-invariant dynamical system of the form

ax/dt = r(x(t),u(t)) (4.8)

with control signal constrained by

Umin --< u(t) --< Umax . (4.9)

Let the control objective be either time-optimal transfer of the plants state from some initial condition x o

to a desired terminal state xf, or minimization of infinite horizon quadratic error criterion:

J= IO _ Pi (xi- xif) 2 dt (4.10)

For the time-optimal control to be well posed xf must be attainable from x o in finite time by some control

satisfying (4.9). Then the sufficient conditions for the time-optimal control to exist can be found in [4.1].

For the quadratic criterion (4.10) minimization to be well posed, xf should be an equilibrium of (4.8).

In both cases, if the solution exists, it is time-invariant, i.e., if the starting time is shifted but the initial

condition is the same, the optimal control signal is identical modulo time shift. Now consider a family

of such optimal control problems with fixed desired state xf and initial condition varying within some

neighborhood of xf. This may correspond to the problem of time-optimal or quadratic optimal rejection

of random state disturbance with fixed desired steady state value. Intuition based on the principle of

optimality suggests that the value of optimal control signal should be expressible as a function of the state,

hopefully with some smoothness properties. Unfortunately this does not have to be the case. Discussion

of difficulties arising in this problem and further references may be found in [4.4] or in survey paper

[4.8]. In this study it is assumed that indeed in the region of interest the optimal control signal for fixed

desired state may be expressed as

u °pt(t) -- g(x(t)) (4.11)

which is unique up to a set of measure zero (e.g., a switching hypersurface). In extension to the work

of [4.10] we furthermore consider a family of such feedback synthesis problems, parametrized by desired
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finalstate xf. We introduce the command or target signal xf as additional input to the controller and look

for a feedback law of the form:

u °Pt(t) = g(x(t),xf) . (4.12)

The approach is to teach a neural network to approximate this finite-dimensional static mapping from off-

line generated optimal trajectories corresponding to different initial conditions and different target points.

The previously mentioned approximation theorem guarantees uniform approximation of a continuous

function, whereas optimal controls are often bang-bang -- both in time-optimal and quadratic optimal

cases (see previous section). However, continuous functions over a compact set are dense in _2, so it

is possible to approximate (4.12) by a neural network arbitrarily closely.

4.2.4. Training of Neural Network Controller

The process of finding the proper weights for the neurons is called training.

gradient-based procedure, during which the quadratic error is _ed:

It is an iterative

j= _. lyi_ynet(zi)_ (4.13)

where the sum is calculated over the training set consisting of pairs {zi, Yi}, with z and y being the input

and desired output of the network, respectively, and ynet is the mapping realized by the network. In case

of quadraticregulation of angle of attack, investigated in Section 4.3, the input consists of the state of

the aircraft, and of desired value of o_: z = [c_, q, 0, v, otf]T, and the network output is the aircraft

control vector y = [_h, TM, 51"]T. The values of Yi and z i in this case come from sampling of desired

input-output trajectories. It has to be noted that criterion (4.13) is a discretized version of integral

criterion (4.5) with p = 2, and this introduces yet another level of approximation. For the resulting

network to approximate the optimal feedback mapping closely, not only has the minimum of (4.13) be

achieved (which in itself may be a difficult and time-consuming problem), but also the training set has

to be constructed judiciously. An obvious conflict here is between quality of the controller and effort

required for its parameter identification (training).

For the minimization of (4.13) the gradient of J with respect to the network's weights is

calculated through a chain rule, whose particular application to neural networks is nicknamed

"backpropagation" (see [4.3]). After the gradient/gJ/Ow is calculated the search direction 6w (in the

weight space) is determined and the minimum of J with respect to the step size 7 in the direction 6w is
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found,which includes calculation of J for several values of %

are set according to:

Wnew = W°ld + AW = W°ld + 3t°pt_w

The flow of information during the training process is shown on Fig. 4.2.

Finally the modified values of the weights

(4.14)

_req

x= (or, q, O,V)

uopt

m•

Neural approximator

w Aw

Error minimizing

algorithm

U

Figure 4.2. Training of neural suboptimal controller.

In this study a version of conjugate gradient algorithm from [4.7] is used for determination of

the search direction. The line search is performed using a combined two-point gradient-based and three-

point non-gradient parabolic fit.

4.3. Simulations

A neural network approximation of the optimal control was developed for the aircraft model

discussed in Section 3.2.1. The control problem considered was minimization of quadratic performance

index (3.12-3.13) with P2 = P3 = P4 = 0, Pl = 1 -- i.e, with the angle of attack being the regulated

output variable. A family of solutions to this problem is discussed in Section 3.3. The training data for

the neural network was obtained by sampling 15 numerically found trajectories -- with initial conditions

trimmed with angle of attack approximately equal 5 °, 20 ° and 35 °, and with target values of u equal 5 °,

20 °, 35 °, 50 °, 60 ° and 70 °. The trajectories were sampled every 0.1s, which with 8s horizon resulted

in 1200 training points necessary for a single evaluation of performance criterion. The network's inputs

are taken to be four states c_, q, 0, v and the desired value a_ and the outputs are U_h, UTM, u_.
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_req i

Neural

sub-optimal
controller

U l l
Actuators _----_ I

I ,I
Plant

x=(a,q,8,v)

Figure 4.3. Neural controller configuration

A number of single hidden layer networks was trained on this training data in configuration from

Fig. 4.2. The networks used had one hidden layer and the neuron's activation function used was standard

sigmoid. Then the resulting neural network controllers were tested in feedback configuration depicted

on Figs. 4.3. A typical performance of a simulated neural network controller is shown on Figs. 4.4-4.7.

Here the same initial conditions and target values were used for two neural controllers -- with 30 (A) and

15 (B) hidden neurons. The initial transition to the vicinity of required value is of very good quality.

Then however a "steady state" error occurs. This is may be due to the fact that the network actually

wants to perform the plant's dynamics inversion which obviously is not 100% correct. There is no

explicit dynamic error feedback and as a result a small error will always occur. Also the network was

trained as a static mapping, and the approximation error _ed during training does not correspond

to the regulation error. A much better approach would be to train the networks in the feedback loop with

the aircraft model, accounting for different sensitivities of the output with respect to control actions in

different state-space regions. This is proposed for our future research.

An interesting test of the capabilities of neural controller is depicted on Fig. 4.8. Here the

desired value of the output is set to 80 ° -- a value that is outside the range covered by the training data.

A quite satisfactory output trajectory adds credence to the claims about good extrapolation properties of

neural networks.

4.4. Conclusions and Practical Considerations

The neural network based controller presented in the previous subsection demonstrates how the

results of optimal control theory may be applied to the synthesis of feedback controllers. Results are

promising, but at least a few shortcomings are apparent. First of all the simulations reveal problems with

terminal state accuracy. These result from inaccurate inversion of the plant dynamics obtained through

the training process. This indicates a need for incorporating the idea of dynamic error feedback into the
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neuralcontrollerdesign. One possibility is to allow a second parallelly acting regulator, possibly a linear

one, activated in the neighborhood of the desired value. Such additional controller would provide

corrective action to eliminate the error. Another possibility is to establish an outer loop controller

regulating the or"_q value fed to the network in order to get true desired value as output. This possible

controller configuration is depicted on Fig. 4.9. In both cases the established linear control techniques

may be used for design of the local controller, since it is not intended to work with large variations of

Modified plant

areq " I Linear

I
controller

ar

 eural l u [sub-optimal _------,

controller 1

x=(u,q,e,v)

Plant

Figure 4.9. Proposed configuration with an additional controller

The more general problem involves robustness with respect to model inaccuracy. The optimal

trajectories, used as source of training data for the network, were generated using an exact model of the

plant. Discrepancies between the plant and the model are sure to cause serious problems in terms of the

controller performance. For small modelling errors the previously discussed concept of additional linear

feedback might provide a satisfactory solution. For larger uncertainties the approaches introduced in

Sections 5 and 6 and in [4.11] may be more useful. The latter suggests a number of controllers designed

for different nominal models of the plant and with a hierarchical classifying network interpolating between

the nominal controllers. Work on applying that method to control of an aircraft is currently under way

and proposed for continuation.

The neural networks used here were merely simulations implemented on a serial computer. This

necessarily is an impediment for the processing speed, particularly if the learning phase is concerned.

However recent advent of hardware implementations of neural networks makes practical application much

more realistic. Faster future computing power may make on-line training with the actual airplane

maneuver more feasible and thus alleviate some of the problems associated with simulation training.
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5. NONLINEAR ADAPTIVE CONTROL

5.1. General Concept

This section discusses results of studies of a control approach based on input-output model of the

control plant. The majority of practically used control algorithms utilize, either explicitly or implicitly,

some model of the plant dynamics. One of the possible forms of such a model is an input-output model,

relating applied control action to resulting observed behavior of the system. The main reason to use

input-output, rather than state space models, is that they employ only measured quantities subsequently

used by the controller, and therefore are more natural in control system setting. Also, very often the

model of the plant is not given prior to the controller synthesis, and has to be identified, either off-line

or on-line, using the available input-output data. In such a case the input-output modelling approach is

more effective, since it has simpler model structure and results in fewer parameters to be identified.

Furthermore, for a given plant and given input and output signals, the state space model is not unique,

while the input-output model is -- although, of course, both may be practically realized by various

approximate modelling techniques. Obviously, the input-output modelling approach also has its

disadvantages. The main one is that it is basically a black-box-type technique, in which the phenomena

"inside" the plant are of no interest, as long as its response to the input is modelled correctly. If the

dynamics of the plant is easily available from physical considerations the state space model usually can

be constructed with no difficulties and its parameters have well understood interpretations. On the other

hand parameters, of input-output models usually have no immediate physical interpretation.

There are several standard input-output modelling techniques for nonlinear systems in both

discrete and continuous time settings. They include Volterra series, Wiener series, nonlinear time series,

neural networks, etc. -- a detailed survey may be found in [5.4]. In this work the time series approach

is used. This technique is a natural extension of discrete time modelling of linear systems, known in the

stochastic setting as auto-regressive moving average (ARMA) models. Therefore, an often used acronym

is NARMA -- for nonlinear ARMA [5.2]. The nonlinear time series expresses future values of outputs

as a nonlinear function of a finite number of past values of output and of control. For the purpose of

system identification this unknown nonlinear function is usually decomposed into a sum of nonlinear

functions with parameters to be identified appearing linearly. This allows for easy application of

parameter identification techniques from linear systems theory, although their convergence in an on-line

identification setting in a feedback loop is a far more complicated question than in the linear case. If the

time-series model is to be used for calculation of control action, it is also desirable that it should be easily

solved for current value of control. Therefore, most often control appears in the model either linearly

(or more correctly in an affine fashion) or as some strictly monotone function.
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In the aircraft problem, the physical model of the dynamics is well known and is easily

expressible in state space form. Nevertheless, there are significant reasons to look at input-output black-

box-type modelling as an alternative approach. The main problem arises from the aerodynamic stability

derivatives. They are complex nonlinear functions of angle of attack, Math number and altitude. If these

relations are entered into the state space model it appears so complicated that its usefulness for on-line

control generation becomes quite doubtful. Furthermore, the exact form of the dependencies of stability

derivatives on state variables is not known -- even for fixed angle of attack, Math number and altitude

their measurement accuracy may be as low as 50% in extreme cases. Therefore, an overly complicated

nonlinear state space model would not seem to be very useful for on-line control calculations. A much

better choice is a simple input-output model capturing the essential dynamics of the aircraft. In this work

the time series model used includes polynomial nonlinearities in angle of attack.

The control algorithm used here is an adaptive, or self-tuning, non-linear model reference

technique. The time-series input-output model is identified on-line using a re,cursive least squares (RLS)

method, and one step ahead error between the predicted and reference output is minimized.

The following sections describe in some detail identification and control algorithms used, provide

simulations and discuss conclusions for future research and practical implementations.

5.2. Methodology

5.2.1.

Where f is a nonlinear function.

practical applications is:

Nonlinear Time Series Model

The nonlinear time series model considered here has general form:

ym_(k+l) -- f(y(k), y(k-1), ..., y(k-n), u(k), u(k-1), ...,u(k-m) (5.1)

To facilitate easy identification of the model the form assumed in most

ymodoc+p ) = pT _Oc) (5.2)

where P is the parameter matrix, and qb(k) = ff(y(k),y(k-1),...,y(k-n),u(k-1),u(k-2),...,u(k-r)) is a

nonlinear function of current and past values of input and output. Linear dependence of the future output

on unknown parameters allows one to use one of the linear regression methods for identification [5.1].

The plant studied here is a fourth-order nonlinear model of the longitudinal dynamics of the

aircraft. The same model was used in studies described in Sections 3 and 4, and is discussed in detail

in Appendix B. The difference here is that only one control signal is used -- the stabilator/elevator angle,

while thrust is assumed to point parallel to body axis and to be of constant magnitude all the time. Thus,
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the simulated plant has four states -- c_, q, 0 and v, and one control 8h. For the purpose of the control

system synthesis, however, measurements of only two outputs are assumed -- c_ and q. Thus in the

identification model we have

y = [or, q]T

P = [Pa, Pq] -

(5.3)

The choice of elements of the regressors' vector, is motivated by the fact that nonlinearities in the short

period dynamics are associated with angle of attack. Also it is recognized that due to the highly nonlinear

nature of the aircraft dynamics it is probably impossible to fit a "black-box" model describing the plant's

dynamics accurately in the whole range of flight condition. Instead it is more practical to fit a simple

local approximate model, and allow its rapid adaptation according to the change of operating conditions.

Therefore, the regressor form is chosen as:

*k = [c_, 02, ot3, q, qo_, qot 2, qa3, u, ua, ua '2, uc_3, I]T (k).
(5.4)

This results in a second-order model corresponding to a currently dominant short-period behavior, but

including nonlinearities in cx, particularly significant at large values of angle of attack.

5.2.2. Identification Algorithm

For the on-line identification of the unknown parameters of the model (5.2)-(5.4), a recursive

least squares (RLS) algorithm was implemented. The basic update formula for parameter estimates at

moment k is

p(k) = (Q(k-2) _(k-1)) / (k(k-1) + _(k-1) T Q(k-2) _(k-1))
(5.5)

with covariance matrix Q being updated according to:

Q(k-1) = (Ilk(k-I))[ Q(k-2) - (Q0¢-2) ok(k-l) *0[-1)T Q(k-2)) / (5.6)

O,(k-1) + ,(k-l) T Q(k-2),(k-l)))

Since two parameter vectors p_ and pq are estimated, two covariance matrices Qo_ and Qq are also

calculated. Due to the approximate nature of model (5.2)-(5.4) the currently fitted parameters are

expected to change together with operating conditions. To allow for such changes the forgetting factor
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k is introduced.Asa precaution against unlimited growth of the covariance matrix Q at the steady state,

which is a consequence of X < 1 when the input is not persistently exciting, a policy with variable

forgetting factor is adopted. The formula for _,(k), taken from [5.3], is:

_,(k) = 1- e(e(k)2/e(k) 2) (5.7)

where e(k) is current prediction error of the model:

e(k-1) = y(k-1) - ym_(k-1) = y(k-1) - p(k-1)T4(k-1) (5.8)

and _(k) is an average of e(k) over a few last samples. For two identification processes going on for Pa

and pq two values of forgetting factor _ and hq are determined with y in (5.8) denoting either t_ or q.

As an additional precaution against uncontrolled growth of matrix Q, its trace is monitored and Q is reset

to a diagonal matrix whenever the threshold value for the trace is exceeded.

5.2.3. Adaptive Control Algorithm

The control methodology is based on model algorithmic control (MAC) [5.5]. The basic formula

of the algorithm is:

yref(k+l) = ymOd(k+l) + _(k)_ymod(k) ) (5.9)

where yref is required (reference) output, generated using the command signal (in the aircraft case from

the pilot), y is the actual output and ymod is the output value predicted by the model:

ym_(k+l ) = p T _(k) . (5.10)

Since regressors' vector _(k) depends on control value u(k), the equation (5.9) can be solved for u(k)

resulting in required output in moment k+ 1. In the case of the aircraft control problem, the output is

assumed to be the angle of attack et, and the model is (5.2)-(5.4). The value of control necessary to get

the required output value is calculated as:

-- <51 >

(Ps_ + P9_ a +Pl0a cx2+Plla a3)
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with

(5.12)

If the computed control exceeds the bounds for 8h its set equal to the maximal (or minimal) allowed

value. If the processing time of the on-board computer needed to calculate (5.10)-(5.12) is small enough

in comparison with the sampling time used, then the above formula may be used in the controller. If,

however, the calculation time cannot be neglected, only information sampled at moment k-1 can be used

for calculation of control at time k. Therefore, the correction term in (5.9) is replaced with prediction

error at moment k-1 and the equation becomes:

ctr_f(k-1) = &m°d(k+l) + (or(k-l)- t_m°d(k-1)) (5.13)

with &m°d(k+ 1) being calculated using the estimated values of angle of attack and pitch rate at moment

k, instead of yet unavailable actual values:

6m°d(k+l) = pJ _(k)

_(k) = [6, 6 2, 6 3, q, q6, q6 2, q6 3, u, u6, u6 2, u6 3, 1]T (k) .

(5.14)

Estimated current values of measured outputs are calculated taking into account previous prediction

errors-

(5.15)

Also in equation (5.11), which is used for the calculation of control value, & and q are used instead of

ct and q, and (5.12) is replaced with

6 r = t_ref(k+l) -(t_(k-1)-otm°d(k-1)) . (5.16)

The algorithm is made adaptive, or self-tuning ([5.6]), by including the identification mechanism

described in Section 5.2.2 for parameters Pa and pq. Thus the design is a certainty-equivalence one, and

its validity depends upon the assumption that indeed the identification and calculation of control can be
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performed separately. Here we tacitly assume legitimacy of such method for the problem being solved,

but it has to be pointed out that this is a heuristic method justified mostly by simulation experiments.

The generation of reference trajectory oeref is performed using the command signal and current

output value oe. The reason to include output feedback in calculation of _-ef is to avoid unrealistic values

of reference signal, leading to control values outside the region of local validity of identified model. If

in the previous step the reference value was not attained, then the reference in the next step is less

demanding, so that it can be attained. In this study a second-order algorithm is used for calculation of

_,ref:

yref(k+l ) = al_(k) + a2c_(k_l) + otemd . (5.17)

The overall flow of information in the algorithm is schematically depicted on Fig. 5.1

u cmd Reference

mode I

u_ref ]
.), Controller

--, [ (MAC)

O_

p_u, p_q

!

u • ] Aircraft

_• ] Identification

t

l

Figure 5.1. Flow of information in adaptive control algorithm

Attempts of the control algorithm to solve (5.9) exactly may result in control signal changing very

abruptly and often oscillating, while trying to track the reference trajectory. Therefore a modified one

step ahead design was introduced aimed at smoother control trajectories. Instead of solving (5.9) the

following cost function is minimized with respect to current control value:

J = (&m°d0c+1)-&r0c+l))2 + O(U0C)-n(k-l))2
(5.18)
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with &moO, _r as before.

with

Minimization of (5.18) results in

(5.19)

a = plot& + p2aEr2 + p3cx&3 + p4_l + pscx& + P6aq&2 ÷ P7ot_l&3 + P12_x

b = Pga + P9,_& + Plo_ Et2 + Pll_x &3 •

Obviously, for p = 0 (5.19) reduces to (5.16), whereas for p -- oo we obtain u(k) = u(k-1) = const.

As before, if (5.19) results in a value outside the allowed range, the closest feasible value is used instead.

5.3. Simulations

The adaptive control algorithm described in Section 5.2 was simulated on the complex fourth-

order nonlinear model of longitudinal dynamics of the HARV aircraft. Only one control signal, the

elevator/stabilator angle, is used with both thrust magnitude and thrust direction assumed to be constant.

The maneuvers presented here were simulated at 15,000 feet and 0.3 Maeh. Initial estimates of

parameters Pa and pq are set to zero, and the simulation is initiated at trim condition corresponding to

c_ = 5 °. Then the adaptive controller is simulated with ¢xemd = 5* for 5 seconds, during which the

controller learns current dynamics of the aircraft. This corresponds to a practical situation, when the

control and identification is performed continuously and before any maneuver the parameter estimates will

never be zero. The variable forgetting factor (5.7)-(5.8) is calculated with e = 0.01 and the past

prediction errors are averaged over last 10 samples.

Figure 5.2 displays the result of simulation of nonlinear adaptive algorithm for command signal

first jumping to 60 ° and then decreasing to 30 ° and 5*. The output trajectory is showed together with

reference signal, which is displayed in dotted line. For contrast, Fig. 5.3 shows simulation of the same

algorithm, but with linear identification model used. It is observed that controller utilizing the nonlinear

model performs much better. As seen on the figures both these results were done on a simulation model

that did not account for saturation of change rate of the elevator angle. If this phenomenon is included

in the plant's dynamics both controllers sustain undesirable oscillation. This was probably caused by

lower maneuverability with rate saturation and by inadequate modelling of saturation with the model

(5.2)-(5.4) which includes only terms linear in control. A possible remedy is to take into consideration

the rate limitations in calculation of control value. Also for higher maneuverability both thrust magnitude

and thrust direction ought to be included as control signals. This will require a little more involved
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calculations for minimization of (5.18), which will become a three-dimensional optimization problem with

constraints. These problems are addressed in Sections 3, 4, 6, and 7.

[5.21

[5.31

[5.4]

[5.51

[5.61
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6. BILINEAR AND LINEAR ADAPTIVE CONTROL

6.1 Concept

This section describes the design of an adaptive controller for a high performance highly

maneuverable aircraft over flight regimes including very high angles of attack. The purpose for adaptive

control is to provide a mechanism to account for unknown changes in the system dynamics that is to be

controlled. The goal of traditional adaptive control is to use concepts from linear theory to control an

aircraft over a highly nonlinear flight regime. Adaptive control for a small class of nonlinear and time

varying system is investigated in [6.14,6.15,6.30,6.37]. Model reference adaptive control usually

includes system identification. Also, a model system may generate a desired reference trajectory. Then,

a controller uses this information to calculate a command signal such that the output of the system follows

the reference trajectory. A block diagram of such model reference adaptive controller is shown in Figure

6.1. Two important elements have to be developed for an effective adaptation routine. Here, a class of

prediction models is selected first. The prediction model approximates the dynamics of the system, and

it has parameters that can be modified by an estimator. The estimator is the second part of the

adaptation. It estimates the values of the parameters to improve the prediction model. The simplest class

of prediction models are those that are linear in parameters. In this project, each model of linear,

bilinear, and nonlinear prediction models were checked for control performance. The most common

estimation algorithm for such models is the recursive least squares algorithm to choose parameters to

minimize the mean-square difference between the prediction model and actual system. The purpose of

making the algorithm recursive is to allow for on-line identification of parameters.

The input reference model [6.8] is an intermediate step that allows the system to follow the

command signal while meeting a variety of design criteria (for instance, rise time, overshoot, settling

time, etc.). The control is calculated such that the system follows the reference trajectory, and such that

the control signal remains within its constraints. Each block of the adaptive controller is described in the

sections that follow.
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6.2 System Dynamics

The supermaneuverable aircraft dynamics described in this section is based on a modified version

(I-IARV) of the F-18 aircraft. The controllers consist of the stabilator and thrust vectoring. The stabilator

angle, an aerodynamic control input to the aircraft dynamics, is useful at normal flight conditions. The

thrust vectoring is useful at high angle of attack, low dynamic pressure operating conditions, where the

aerodynamic control effectiveness is inadequate. The aerodynamic coefficients are considered to be

functions of the stabilator deflection as well as the angle of attack, Maeh number, altitude, and pitch rate.

The effects of leading edge flap, trailing edge flap, speed brake, landing gear, etc, are not considered.

It is assumed that all simulations were to occur at a nominal constant altitude of 15000 feet. The

longitudinal equations of motion are given in Appendix B.

The input dynamics were described by three states -- thrust magnitude (T), thrust

vectoring angle (5v), and stabilator angle (6h). The stabilator and the thrust vectoring dynamics include

a velocity limiter of 40 ° per second for the stabilator angle, and 80 ° per second for the thrust vectoring

angle [6.2]. The differential equations are stated below.

Stabilator Angle Dynamics:

_h =

-40 (_hemd-_h) < --_

3(_6hema - 6h ) -4 < (_henxI__h) < 4-g-- -3

4o > 43

The magnitude of the stabilator angle is limited according to the following equation.

-24.0 ° _ _ < 10.5 °

(6.1)

(6.2)
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Thrust Vectoring Dynamics:

-80 (SVcmd-By)<

++= -<(+v+-++)+-3- -_

8
80 (SV_md- _v)> 3

The magnitude of the thrust vectoring angle is limited according to the following equation.

-20 ° _< 8v _< 20 °

Thrust Magnitude Dynamics:

(6.3)

(6.4)

"F = ffemd - '1_ (6.5)

where Tern d is command signal of the magnitude of thrust. The magnitude of thrust is limited according

to the following equation.

0 < T < 18000 lbs. (6.6)

6.3 Prediction Model

Here we are interested in simply approximating the real system in order to synthesize an effective

adaptive control in real time. Modeling is important since the choice of model is often the first step

toward the prediction or control of a process. An appropriately chosen model structure can greatly

simplify the parameter estimation procedure and facilitate the design of prediction and control algorithms

for the process.
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6.3.1 Class of Models

System models can be developed by two distinct methods. Analytical modeling consists of a

systematic application of basic physical laws to system components and the intercormection of these

components. Experimental modeling, or modeling by synthesis, is the selection of mathematical

relationships which seem to fit observed input-output data. Experimental modeling is emphasized in this

section.

Experimental models can be described by state-space, difference-operators, autoregressive moving

average models [6.15], etc. In this section, we discuss the difference-operator representation among

several approaches. Generally, state-space models can be generated as a set of first-order difference

equations. An alternative description is to use a high-order difference equation with an appropriate

difference-operator representation. In order to describe these models in a succinct manner, we introduce

the forward and backward shift operator q and q-1. If y(t) denotes the value of the sequence {y(t)} at

time t, where t E {0,1,...}, then qy(t) denotes the value of the sequence at time (t+l), and q-1 y(t)

denotes the value of the sequence at time (t-1). That is,

qy(t) --y(t+l) fort _ 0

and consequently,

(6.7)

q-l(t) = y(t-1) for t _ 1 ; q-ly(0) = 0 (6.8)

qiy(t) =y(t÷i) fort _ 0 (6.9)

q-iy(t) --y(t-i) fort -_- i; q-iy(0) ---0 for0 < t < i (6.10)

The first approach is to simply assume that the model can be adequately described by a linear time-

varying system.
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A linear time varying system can be described by the equation

(6.11)

where A(qq,t) and B(q "l,t) are time varying polynomials of q-1. A(q-l,t), without loss of generality, is

assumed to be monic. Thus, A(q-l,t) could be described by the equation below.

A(q-l,t) = 1 + al(t)q -1 + a2(t)q -2 + a3(t)q -3 + ... + an(t)q -n (6.12)

This leads to a simple prediction model with the following form:

9(t) = _(t)T_(t) (6.13)

cI,(t)T = [y(t-1), y(t-2), ..., y(t-n), u(t-1), u(t-2), ..., u(t-m)]
(6.14)

_(t)T = [_al(t), _a2(t), ..., an(t), bl(t), b2(t), .--, bin(t)] (6.15)

The second approach is to simply assume that the model can be adequately described by a bilinear time-

varying system.

A bilinear time-varying system can be described by the equation below [6-7,6-29],

my m z my mz

y(t) = y_ aiY(t-i) + _ b iu(t-i) + _ _ cij y(t-i)u(t-j)
i=1 i=1 i=l j=l

(6.16)

where my, mz, are the orders of the output and input.

This leads to a simple prediction model with the following form:

_(t) = _(t) T _(0 (6.17)

_(t) T = [y(t-1), y(t-2), ..., y(t-my), u(t-1), u(t-2), ..., u(t-mz),

y(t-1) u(t-1), y(t-2) u(t-1), ..., y(t-my) u(t-mz) ]

(6.18)
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The third approach is to simply assume that the model can be adequately described by a nonlinear

time-varying system.

Input-output descriptions that expand the current output in terms of past inputs and outputs

provide models that represent a broad class of nonlinear systems.

A nonlinear time varying system can be described by the equation below [6.6],

y(t) = FG(Y(t-1 ), y(t-2), ..., y(t-ny), u(t-1), u(t-2), ..., u(t-nz) ) (6.19)

where FG(. ) is some nonlinear function, is about as far as one can go in terms of specifying a general

finite nonlinear system. Model (6.19) is referred to as a NARMAX (nonlinear ARMAX) model.

6.3.2 Aircraft Prediction Model

As can be seen from Section 6.3.1, several different approaches exist to formulate a prediction

model for a nonlinear system.

First, a linear aircraft prediction model for aircraft is considered as follows:

&(t+l) = _(t)TO(t-1) (6.20)

O(t) T = [a(t-1), q(t-1), or(t-2), q(t-2), t_(t-3), q(t-3), _(t),

_v(t), _h(t-1), _v(t-1), _a(t-2), _Sv(t-2) ]

Second, a bilinear aircraft prediction model for aircraft is given by

O(t) T

(6.21)

& = O(t) T O(t-1) (6.22)

= [et(t-1), q(t-1), or(t-2), q(t-2), or(t-3), q(t-3), 5h(t),

_v(t),/_h(t-1), 5v(t-1), 5h(t-2),/_v(t-2),

or(t- 1)/Sh(t), et(t-2) _h(t-1), t_(t-3) _h(t-2), or(t- 1) 5v(t)]

(6.23)
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Third, anonlinear aircraft prediction model is considered as follows:

=  (t)r b(t-1)

cI,(t)T -- [et(t-2), q(t-2), or(t-3), q(t-3), ,v(t-4), q(t-4), 5h(t-1),

_Sv(t-1), _h(t-2), _v(t-2), 5h(t-3),Sv(t-3), or(t-2)_h(t-1),

t_(t-3) _h (t-2), c_(t-2) q(t-2), _(t-2) q(t-2), _v(t-1) ct(t-2),

tSv(t-2 ) t_(t-3), ot2(t-2), t_2(t-3), ot3(t-2), t_2(t-2) q(t-2),

u2(t-2) _(t-1), 6v(t-1) c_2(t-2)]

(6.24)

(6.25)

6.3.3 Parameter Estimation

Overview of the Recursive Least Squares Algorithm

The recursive-least-squares (RLS) algorithm is the most popular on-line parameter estimation

algorithm which is the minimization of

1 N
jN = "N _ xN-t_(t) _ OT_(t)_ (6.26)

t=l

The problem is to obtain model parameter estimates which,in a least squares sense, minimize the

difference between the actual output, y(t), and its value predicted by the model. The vector contains past

input and output values and its dimension depends on the order of the model to be estimated. This leads

to the recursive least squares algorithm with a variable forgetting factor. The parameter vector update

law is given by

_(t) = _(t-1) + K(t)[y(t)-_(t-1) T _(t)]
(6.27)

and the gain update by

K(t) = P(t- 1) _(t) (6.28)
X + _(t) T P(t-1) _(t)
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Covariance matrix update:

_- 1 [P(t-1) - P(t-1) _(t) O(t) T P(t-1) ] (6.29)P(t) _ _" Z _'_ P--_- 1")_ l

The basic RLS algorithm with X = 1 has several important properties. First the least squares

algorithm has a fast convergence rate (exponentially fast for a linear time invariant system with proper

excitation). Also, the stability of the RLS algorithm combined with direct and indirect adaptive control

is well understood and many proofs have been published in this area [6.5,6.15,6.20].

The main disadvantage with basic RLS is that the covariance matrix gradually decays to a small

value and therefore the algorithm does not retain its adaptivity to adequately track time-varying systems.

The covariance matrix in the RLS algorithm tends towards zero which causes the adaptation to turn off.

This is undesirable in the case where the parameters are time varying. Several modifications have been

made to the RLS algorithm to correct this problem. A variety of modifications are proposed in the

literature to keep the algorithm awake. The modifications in general are of two different types. The first

idea is the inclusion of the forgetting factor. The second type of modifications that have been proposed

is to manipulate the covariance matrix directly. Modification of the covariance matrix approach is

considered in the following section.

Constant Covariance

An approach proposed by Goodwin in [6.15], is to maintain a constant covariance by the addition

of a properly scaled identity matrix. This leads to the following algorithm.

P'(t) = [I - K(t) _(t) T] P(t-1) (6.30)
X(t)

Let r = trace (P'(t)), and C o, C 1 denote two positive constants such that C 1 > Co.
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IFr> C O

C 1 - r (6.31)
P(t) = P'(t) + _ I

n

IFr-<C o

(6.32)
P(t) = mCO P'(t) + _C1 - CO I

r m

The algorithm ensures a constant trace of C 1, and the following bounds are placed of the eigenvalues of

p(t).

C I- Co

m
_< _[P(t)] _< C 1 (6.33)

Covariance Regularization

The basic idea of updating is a combination of a covariance resetting feature and a guarantee of

lower and upper bounds on the covariance matrix. This algorithm replaces equation (6.29) by:

P'(t) = [I - K(t) @(t)T] P(t- 1)
X(t) (6.34)

(6.35)

where C o, C 1 denote two strictly positive constants such that C 1 > C o.

This modification maintainsthe following bound on the eigenvalues of the covariance.

c o < x[P(t)l -< (6.36)

Its performance was reasonable, but the best results were obtained by combining the matrix regularization

with the constant covariance. This resulted in the following algorithm.

Let r = trace (P'(t)), Co, C1 denote two positive constants such that C 1 > CO, and 0 < C2 < 1

6-10



IFT> CO

P(t) = C 2 P'(t) + Cl - c2 r I (6.37)
n

IFr___C o

P(t) = --C° rP'(t) + --C1- c° I (6.38)
7" m

One way to interpret this algorithm is that it is a combination of the constant covariance and the

covariance resetting.

6.4 Control Calculation

The controller was designed to perform or meet several goals. First and most importantly the

control values are calculated such that the angle of attack of the aircraft follows the reference model. The

control values were also calculated such that the thrust vectoring would return to zero if it were no longer

needed, and a certain amount of smoothness was desired for the control signals. The following cost

function was minimized at each step.

J 1 [°ref(t+l) - &(t+l)_ + 1 P2 [6hema(t) - dihemd(t-1)_2

+ 1 3[CSVCmd(t)__SV¢md(t_l)_2+ 1 [ vo  t)12
(6.39)

6.4.1 One Step Ahead Predictor Controller

Let the prediction model in equation (6.13) be described by,

_(t+l) = a_¢m_(t) + b#vCmd(t) + g(t)To(t-1) (6.40)
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(6.41)

0(t-l) T = [a(t-1) b(t-1) 0(t-l) T]

Taking the derivative of J with respect to the control gives

(6.42)

dJ
°

d _h¢_d
--= Pl [_ref(t*l) -&(t*l)] (-a) * p2 [_omd(t) - 8hcf(t-l)]

dl = pl[C%ef(t+l)_&(t+l)](_b) + p3[_vc_d(t)_SVemd(t_l) ] (6.43)

This control yields the following:

where

I" "1

[Pl a2 + P2 Pl a b ]

! ,JL Plab Plb2+p3+p

-1

(6.44)

_/ = etref__(t)T_(t_l) (6.45)

To include the velocity and magnitude limits in the control calculation two extra conditions are added.

The first condition requires that _Vemd(t) be recalculated if_Shemd(t) has reached the magnitude limit. The

second condition requires that _Vemd(t) be recalculated if _cmd(t) is a value requiring 80 ° per second.

¢_Vemd(t)is recalculated as follows:

- a _hCmd(t) (6.46)
_Vo_d(t) = b
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After thecontrolvalueshave been calculated they are limited by 40 ° per second for f_emd(t) and by 80 °

per second for 5Vemd(t).

6.5 COMPUTATION

6.5.1 Models

In design of real systems, there exist some restrictions to be considered because of physical

properties. For example, the input dynamics are described by three states-thrust magnitude, thrust

vectoring angle, and stabilator angle. All of these have the limitations noted in Section 6.2.2.

The linear prediction model is rewritten as follows:

&(t+l) -- bo(t-1) _hcmd(t) + bl(t-1)/_Vcmd(t) + _(t)T0(t-1) (6.47)

_(t) T = [or(t-I), q(t-1), a(t-2), q(t-2), or(t-3), q(t-3),

5hcma(t- 1), 6Vcmd(t- 1), _h_md(t-2), 6Vcmd(t-2) ]

(6.48)

0(t_l)T = [bo(t_l) bl(t_l ) _(t_l)T] (6.49)

_b(t)T = I/Shored(t) _Vcmd(t)_(t)T] (6.50)

The bilinear prediction model becomes

&(t+1) = b11(t-I)5h¢md(t)+ b12(t-l)dihemd(t)Cz(t-l)+ b13(t-l)6Vemd(t)

+ b14(t-1) _v¢_(t) c_(t-1) + _'(t)ro(t-1)

(6.51)

6-13



_,(t)T = [a(t-1), q(t-1), tx(t-2), q(t-2), et(t-3), q(t-3),

_cma(t-1), _Vcmd(t-1),_cma(t-2), 6Vcma(t-2),

_(t-2) _homj(t-1), c_(t-3) tho_(t-2)]

(6.52)

O(t-1) T = [bll(t-1 ) b12(t-1) b13(t-1) b14(t-1) 0(t-1) T]
(6.53)

(b(t)T= [¢_hcmd(t)t_hcmd(t) or(t-l)_Vcmd(t)6Vemd(t)or(t-l)_(t) T]
(6.54)

The nonlinear prediction model becomes

&(t+l) = Cll(t-1 ) 5hcmd (t)

Cl4(t- 1)/iVcmd(t)

+ t_(t- 1)Cl2(t-1) _cmd (t)

+ Cl5(t-1 )/fV_m_(t) t_(t-1)

+ Cl3(t-1 ) _hemd(t) _2(t-1)

+ Cl6(t-1 ) _Vcmd(t) _2(t-1) _'(t)To(t-1)

(6.55)

_(t) T = [or(t-I), q(t-1), ix(t-2), q(t-2), or(t-3), q(t-3), 8h(t-1),

6v(t- 1), 6h(t-2), 6v(t -2), ct(t- 1) _(t- 1), ,v(t-2) 5h(t- 1),

tx(t-1) q(t-1), tx(t-2) q(t-2), fir(t-l) c_(t-2)

6v(t-2 ) tx(t-3), tx,2(t-2), tx2(t-3), tx3(t-2), a'2(t-2) q(t-2)]

(6.56)

O(t_l)T = [ell(t_1 ) c12(t_1) Cl3(t_l) C14(t_1) Cl5(t_l) Cl6(t_l) _(t_l)T] (6.57)

q_(t)T = [Shcmd(t) 5h¢_(t) ct(t_l) _hcmdC_2(t_l ) _Vemd(t) _Vcmd(t)_(t_l) 5VcmdC_2(t_l) _,(t)T] (6.58)

6.5.2 Identification and Control

This adaptation was performed using the modified RLS described in Section 6.2.3.3.

The controller is calculated to minimize the cost function in equation (6.39) by
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r fla22lab]
[OVcmd(t)J L Pl a b Pl b2 + P3 + P4

-1

(6.59)

This leads to the following control law calculation:

t_hcmd(t ) =
5hcmd(t-1)(b2OlP2 +p2P3 ÷p2p4) ÷ (a_/-ab/_vemd(t-1)plP3 + a_/plp 4 (6.60)

b2plP2 + a2pl(P3 + P4) + 02(P3 + P4)

_,,¢.,d(t) =
_Vcmd(t-1)(b2plP3+02P3)+ _1- ab 5hcma(t-1)Pl 02

+ a 2b 2 Pl ,°2 Pl(P3 + 04) + P2(P3 + P4)

(6.61)

where

7/ = t_ref-_(t)T0(t-1) (6.62)

6.6 Simulation

Several different simulations were used to evaluate the model performance. Two cases of the

results are described below. The first maneuver corresponds to the maneuver presented by Ostroff in

[6.32]. The angle of attack is changed from 5*, to 60 °, 35 °, and back to 5 ° in 8 second intervals. In

the second maneuver the angle of attack is changed rapidly from 5 ° to 85 ° for an extended period of

time.

6.6.1 Simulation Data

In the case of the linear prediction model, the controlled maneuvers use C O = 600, C 1 = 1200,

C 2 -- 0.98, Pl = 100, 02 = 0.001, 03 = 0.001, P4 = 0.001.
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In the bilinearpredictionmodel, the first maneuverstartswith CO = 800, C 1 = 1600,

C2 = 0.98, Pl = 92, P2 = 0.0001, P3 = 0.0099, P4 = 0.0.

For the second maneuver, the bilinear prediction model starts with CO = 800, C I = 1600,

C2 = 0.98, Pl = 89, P2 = 0.07, P3 = 0.00001, P4 = 0.00044.

In the nonlinear prediction model, both maneuvers start with Co = 1200, C 1 = 2400,

C2 = 0.98, Pl = 95, P2 = 0.0001, P3 ---- 0.01, P4 ---- 0.0.

6.7 Conclusions

The character of the response for the first maneuver in the linear prediction model, the bilinear

prediction model, and the nonlinear prediction model is similar to the response reported by Ostroff in

[6.32]. However, the adaptive controller provided a somewhat faster response. The angle of attack

reached 55 ° in approximately 2.0 seconds while the variable gain approach in [6.31,6.32] reached 55 °

in just under 3.5 seconds. The time optimal control (with a limitation of 40 ° per second on the thrust

vectoring) reached 55* in about 1.8 seconds [6.24]. In the case of maneuvers one and two, comparing

the bilinear adaptive controller with the linear controller, we see that the response of the bilinear adaptive

controller is slightly faster for given desired trajectories (60 °, 35 °, and 5 °) and has a smaller oscillation

at the terminal end. For the second maneuver, the bilinear controller held the angle of attack at 85 ° as

the aircraft approached steady state.
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7. SLIDING MODE CONTROL

7.1 Concepts

Sliding-mode control (SMC) appeared in the Russian literature as early as 1930s and was further

developed independently in Russia and the U.S.A. along with variable structure control (VSC) systems

in the early sixties (e.g., [7-30,7-49]). VSC systems is a part of nonlinear control systems where the

structure is not fixed but is varied as part of the control process, for example, by switching control-gain

between two values according to some law.

The SMC typically uses a high-speed switching control law to make the state trajectory of the

system approach a switching ("discontinuous") surface which is called the sliding surface and to remain

on this sliding surface once the state trajectory intersects the surface, or at least for some desired period

of time such as in handling state constraints.

Design of SMC consists of at least two main parts. One is the reaching mode, in which the state

trajectory starting from anywhere on the state plane, is directed toward the sliding surface. The other

part is the sliding-mode with the state trajectory on the sliding surface. For these two modes, we have

to design the switching surface and control law for teachability and existence of a sliding-mode.

In general, discontinuous control is used and it is switched between two values near the sliding

surface to satisfy the reachability condition. In the ideal case, the switching time of a sliding-mode is

zero, but in reality fast switching of the control input causes the state trajectory to chatter along the

sliding surface. This imperfection in the switching mechanism not only generates the undesirable high-

frequency components in the state trajectory but also may excite unmodeled high-frequency system

dynamics. Consequently, it could make the system unstable, and in many cases, chattering must be

minimized. To reduce the effect of chattering by smoothing out discontinuous control, various

investigators (e.g., see [7-46]) introduced a boundary layer near the sliding surface. The boundary is

defined by the set L(x) = {xl [Is(x) H < e, e > 0} where e is the thickness ofthe boundary layer and

s is sliding surface.

Outside the boundary layer, control input is chosen such that attractiveness to the boundary layer

is guaranteed. Inside the boundary, discontinuous input sgn(s) is replaced by {s(x)}/e.

Generally, there is a trade off between a fast response and overshoot in control design. However,

SMC potentially can alleviate this trade off. If states are driven to a sliding surface and slide along it

keeping the angle of attack at desired value as in Fig. 7-1, the state finally arrives at a desired point p

without overshoot in an ideal sliding-mode control.
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Fig. 7.1 Ideal sliding-mode control

If continuous sliding-mode control (CSMC) is used and the reachable speed is adjusted within

a boundary layer the effect of chattering can be reduced and a better result can be obtained without

overshoot. This nonlinear control law uses a sliding surface which is described in the form of the

equation of error between actual output and desired output. This control law is then applied to the

nonlinear longitudinal motion of a high performance and highly nonlinear aircraft, HARV (F-18), and

as a result, the rise time can be reduced and the output reaches its final terminal point without overshoot.

CSMC also shows some robustness to parameter uncertainty and to disturbances with given bounds.

7.2 Methodology

Usually, sliding-mode control with discontinuous input which includes the sgn( • ) function induces

chattering. To reduce the effect of chattering, a continuous control law is adopted. This continuous

control law can be expanded to not only the decoupled input-output system but also to a multi-input multi-

output system. Further more, it can be applied to systems with constraints of control by modification.

The main purpose of this control is for rapid maneuvers with large changes in angle of attack and

to keep it at the final value while the aircraft is not trimmed. Here, only two controlled outputs -- angle

of attack t_ and pitch rate q will be selected. During this control, the thrust magnitude will be scheduled.

The desired trajectories of angle of attack _ and pitch rate q are selected so that pitch rate converges

when angle of attack approaches its final terminal. The control scheme is composed of o_-q control for

rapid variation of c_ and o_-control for settling _ at its terminal value.
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The control scheme will be described in detail for a difficult but representative maneuver for

increasing(or decreasing) angle of attack rapidly between 5 ° and 60 ° . Of course, the same control, with

appropriate simple algorithmic adjustment, is just as successful for general classes of maneuvers.

7.2.1 System Dynamics

The fifth-order longitudinal motion of the HARV (F-18) described in Appendix B can be

represented simply by the state model:

& = fl + gll_e + gl2Tx + gl3Tz (7.1)

Cl = f2 + g21/te + g22 Tx + g23 Tz (7.2)

_/ = f3 + g31 _e + g32 Tx + g33 Tz (7.3)

, _ = q (7.4)

h = v sin(v) (7.5)

where

and

initial value [ixo qo Vo 0o ho] = [4.3o 0 4.3 ° 500 15000],

a : angle of attack (degree), q : pitch rate (degree/second), V : total speed (feet/sec),

0 : pitch angle (degree), 6h : stabilator angle (degree), 7 : climb angle (= 0-c0,

h : altitude (feet), T x : x-direction thrust magnitude 0bs), T z : z-direction thrust magnitude 0bs),

and/i v : thrust angle (= tan'l(Tz/Tx)) (degree).

F = [fl f2 f3] T (7.6)

G: [G1 G3]--
ill g12 g13]

21 g22 g23J
31 g32 g33

(7.7)

are functions of angle of attack, pitch rate, speed, roach number and altitude through the corresponding

stability derivatives.
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Assumedlimits of the stabilator angle and the thrust angle include those used in Section 3. Here,

however, the admissible thrust angle constrained is 80°/see. Since this was the most recent information

available.

7.2.2 Design of Controller

While the control algorithm can be computered for any given flight path, an initial t_o = 4.3 °

and terminal et = 60 ° is discussed as typical end conditions.

The purpose of this CSMC is to drive the concerned states to a sliding-surface which is

represented by errors between the concerned states and their desired states. For this, control inputs 5h,

tSv, scheduled-thrust magnitude are used and all the states (t_,q,0,V,h) are feedbacked as shown in Fig.

7.2. The control scheme is composed of two parts. In the first stage, an t_-q control scheme is used until

the error e between the final terminal value afinal and ot is less than some error e assumed to be 5 °, that

is, ot arrives at nearly 55* while tx and q follow the desired otd and qd- During this stage, stabilator

angle, thrust angle and scheduled-thrust magnitude are used as control inputs.

Obviously, there is some trade off between ct and q. Here, the major state-variable is angle of

attack not pitch rate. Therefore, the o_-q control scheme is changed to an t_-control scheme when the

error e between afmal and c_ is less than 5*. In this stage, a fast approach toward the sliding surface may

bring out a big oscillation because of constraints of control inputs. Therefore, the reachable speed should

be adjusted using error e = C_d-_ and time derivative of angle of attack, &, to make angle of attack

approach its sliding surface slowly. During this stage, stabilator angle, thrust angle and scheduled-thrust

magnitude are also used as control inputs.

Scheduled

thrust

T

_d

qd

h._
r

T

r

r

CSMC

Aircraft 1

Longitudinal

Dynamics

output

v

Figure. 7.2 Control structure of CSMC
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_-q Control

Select an error sliding surface

s -- [(_ - ad)(q - qd)(V - Vd)] -- 0

and the time derivative of it assuming that V = V d is given by

Algebraically, g can be separated as follows with _3 = 0

g = (& - &d) = (fl - &d + gll 6e + g12 Tx + g13 Tx)

s2 = q - qd = (f2 - qd + g21 6e + g22 Tx + g23 Tx) •

The teachability condition takes the following expression:

sgT = s(F' + Gu) = sF' + sGu -- sG

where

u = t#h Tz Txl T , I1"IIis Euclidean vector norm,

G = [G 1 G 2 G3] =

"gll g12 g13-

g21 g22 g23

g31 g32 g33

and

t ____

' r, ]F1 fl - &d)
r

F3 f3 - Vd
. .

(7.8)

(7.9)

(7.1 O)

(7.11)

(7.12)

(7.13)

7-5



If

u = - (sG)T
lisGil2

sF' - K(sG) T (7.14)

then sgT = -(sG)K(Sg) T < 0 where

K k2

0 k3

is a positive definite matrix.

But Sg T can be modified for practical application with bounded control inputs such as

sg T = [M 1 M2 M3]
U + [M1 M2 M3]T sF' !2 2

M 1 +M 2 +M32

= M[u + L] (7.15)

where

SG = M = [M 1 M2 M3]
(7.16)

2 2 2
IIMII2 = M 1 + M 2 + M 3

(7.17)

and

MlSF' I

IIMII2I

M2sF' ]
L _ _ I

UMII21

S_;T is a function of t_h and Tz because T2 = T 2 + Tz2

"L,7

?3

(7.18)
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By equation(7.15)-(7.18), thereachabilityequationfor thesystem(7.1)-(7.5) can be expressed by

SgT = MI(¢_h + L1) + M2(r z + L2) + M3(T x + I-,3)

[¢ 2] (7.19)= Mt(t$h+L1) + M2(r z+L2) + M 3 r 2-v z+L 3

That is, sg1 is a function of 6 h and s_ is a function of Tz or 6v.

The control scheme is composed of two parts to satisfy the sliding-surface reachability condition

S_l(6h) < 0 and s_2CI'z) < 0 separately.

At every step where sampling time At = 0.03, stabilator angle 5h is constrained to the interval

[6hmin, 6hmax] and Tz is constrained to the interval [Tzmin ,Tzmax] where _v = tan-l(Tz/Tx)"

(1) Control for s_1 (6h) < 0

For SSl(_h) = M1(¢5h + L1), if 5h = -L 1 - klM 1 is selected where k 1 is a positive constant

s_l(Sh) < 0 is satisfied.

Case 1: -L 1 _ [_hmin, 6hmax] and SS 1 > 0 or s_1 < 0 regardless of bounded input _h

If -L 1 is outside of [Shmin, _hmax] one of 5brain and 6hmax is selected to make _ and q approach

the error sliding surfaces as fast as possible considering the sign of M 1. That is, 6hmin and 5hmax is

selected as inputs for M 1 > 0 and M 1 < 0, respectively.

Case 2: -L1E [_hmin,8hmax]

We choose6h dependingon the signofM 1

_hmin-LI

6h = -LI - klM1 = 2 if M 1 > 0

and

_h = -L1 - klM1 =
_hmax - L1

2
ifM 1 < 0

such that the reachability condition s_T < 0 is satisfied.

After _h enters into the inside of the input bound, k 1 is calculated by

_min + L1
k I = if M 1 > 0

2MI
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kl = {_hmax+L1 {2"M1 if M 1 < 0

At the next step, k 1 is used in case that -L 1 is within the input bound. If k 1 is so large that _h

is outside of [Shmin, _hmax], kl is reset to some value by the above method again to make _h be within

the input constraints satisfying s_ < 0.

(2) Control of sg2(T z) < 0

At every step Tz = T sin(tSv) is bounded because 5v

-0r/2} < t5v < z-/2.

is constrained to [Svmin, 5vmax] for

Case 1: -L 2 _ [Wzmin, Tzmax] and s_2 > 0 or _ < 0 regardless of T z

One value is selected between Tzmin and Tzmax to make ot and q approach their sliding surfaces.

Case 2: -a _< sg2 -< b for T z and a,b > 0

In this case,the reachability condition is -a < ss 2 _ 0. Therefore, the range of T z m satisfy

-a _< s_2 - 0 is changed to Tzl _< T z -< Tz2 where Tzl is T z which satisfies one between -a = s_2 and

s_2 = 0 and Tz2 is T z which satisfies the remained one.

The relation of Tzl, Tz2, Tzmin and Tzmax is Tzmin -< Tzl-< T z -<Tz2 -< Tzmax because

T z = T sin(div) is increasing function for -(_r/2) < 5v < lr/2. The control input is calculated by the same

method as that applied in case that s_ 1 < 0 with T z E [Tzl, Tz2] which is given by

Wzl - L2
Tz = -L2 -k2M2 = 2 ' ifM 2 > 0

Tz2 - L2
= - if M 2 < 0Tz -1-'2 - k2 M2 2 '

and different k2 depending on the sign of M2 which is given by

k2 = Tzl+l_ I ifM 2 > 0

I

if M 2 < 0

Case 3: Case that s_2 < 0 and -1.,2 E [Tzmin, Tzmax]

The above same method is used with T z E [Tzmin, Tzmax].
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This control scheme can be explained simply in flow chart as shown in Fig. 7.3. The control

of sg1 (_h) < 0 is depicted by Loop 1 in Fig. 7.4.

a-Control

The a-q control scheme is switched to a-control scheme when error e = _ - a between final

terminal afinal and a is less than 5 o for keeping angle of attack near its final terminal.

According to CSMC scheme, select the sliding surface s = (a-a d) = 0.

The equation (7.1) can be expressed using thrust angle

& = fl + gll _h + g123 sin(a-/_v) (7.20)

Using equation (7.20), the reachability condition is given by

[ + Iglll'gll (f sin(a-/_v))] (7.21)
sg = sg11 5h _ _ 1 - &d +g123

If

- gl____LIf Sin(a-_v) )' kl_h = vl - &d + g123 - SgXl
[gll 12

then s_ = -kl(Sg11) 2 <0, where k 1 is a positive constant.

The equation (7.21) can not be applied directly because the control inputs - stabilator and thrust

angle are bounded at every step as _mi_ -< _ < _ and _Svmi_ < _5,, _< _Sv_ x.

Le,t

1 = [_ gll +g123sin(a_/_v))] (7.22)Igll 12 (fl-&d

Then, sg = Sgll( _ -/) (7.23)

Here, the control purpose is to make the angle of attack approach its sliding surface slowly

without big oscillation satisfying the reachability condition sg < 0. For this, the reachable speed will be

reduced slowly for some time, which means that & is decreased satisfying sg < 0. To adjust reachable

speed, multiple boundary layers are set in the neighborhood of sliding surface and the reachable speed

is adjusted in each boundary layer satisfying the reachability condition as follows:

I error = at-anal- a I > 1 ° :

• 0-2° < I error = Crfmal- a I - 1° :

adjust reachable speed so that

& = +0.1°/At

adjust reachable speed so that

& = +0.01°/At
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Loop1

I 61'=-Ll-klMl I

I

maximum reachable speed

_=_, if Mt>O

_=_, if M_<O

f

yes

' t r

L I ,_
i I

yes

2

I_1' if M,>o

Figure 7.4 Flow chart of Loopl



• 0°---I error = _nal-al < 0.2 °. adjust reachable speed so that

& = _0.0001 °/At

where At (0.03 second) is sampling time.

When & becomes zero approximately interval [/ihmin, _hmax] enters into [lmin, lmax] or interval

[_hmin, 6hrnax] intersects interval [lmin, lmax]. From this time, the reachable speed of angle of attack can

be adjusted linearly in time. or-control scheme is expressed simply by the flow chart in Fig. 7.5.

When the aircraft maneuvers from high angle of attack to low angle of attack the same method

is applied except that angle of attack should be decreased with maximum speed by a-q control. For

uncertain system, CSMC also can be applied by adjusting the reachable speed in the neighborhood of the

sliding surface.

7.3 Simulation

CSMC scheme is applied to the MIMO system with constrained control inputs. In this case,

desired trajectories have to be selected appropriately considering the characteristics of the system.

Scheduled thrust magnitude and desired trajectories of angle of attack and pitch rate for

maneuvers from initial c_ = 4.3 ° to ot = 60 ° and et= 60 ° to ot = 5 ° have to be selected appropriately

considering the system dynamics. Here, it is assumed that the pilot adjusts the scheduled thrust

magnitude for the desired maneuver as shown in Fig. 7.6. ITI = To = 1467.19 lbs for 0.96 second

and ITI is increased linearly from T O to 18000 lbs for 0.96 _ t _<2.94 sec, and it is kept at 18000 lbs

after 2.94 second. Then thrust magnitude is kept at 18000 lbs to 7.98 second. After 7.98 second it is

decreased linearly from 18000 lbs to 10234.584 lbs for 7.98 _< t _< 8.93. Constant thrust

T = 10234.584 is scheduled for 8.93 _< t _< 15.84 second and for 15.81 _< t _< 16.65 second, it is

decreased linearly and finally reaches T = 3000 lbs.

The main purpose of this CSMC control is to control the angle of attack as fast as possible and

keep it at some terminal value. After the rapid or-control phase, it is assumed that the pitch rate should

approach zero.

The desired trajectories of angle of attack ,_ and pitch rate q are selected as follows:
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_d =
60 -- O[ O

t+ot o ,
2.49

c_d = 60,

-25 25 x 8.01
t+ +60,

C_d - 8.97-7.98 8.97 - 7.98

O_ d = 35 ,

-(35 - so)
(t-15.81) ÷ 35 ,

_d = 16.8 - 15.81

O_d = 60 ,

0 < t --< 2.49

2.49 < t < 7.98

7.98 < t < 8.97

8.97 < t --< 15.81

15.81 < t -----16.80

16.80 < t

(7.24)

where c% is the initial angle of attack. Figure 7.7 shows the desired angle of attack.

50
qd- 0.81 t,

-50 50 x 3.99

qd - 3.96 - 0.81 t + 3.96 - 0.81

qd =0,

-22.5 (t - 7.98),
qd - 8.73 -7.98

22.5 (t - 11.61),
qd = 11.61 - 8.73

qd =0,

-17 (t- 15.81),
qd = 16.59- 15.81

17 (t - 17.37),
qd = 17.31 - 16.56

qd =0,

0 < t < 0.81

0.81 < t < 3.96

3.96 < t --< 7.98

7.98 < t < 8.73

8.73 < t < 11.61

11.61 < t <-- 15.81

15.81 < t --< 16.56

16.56 < t -- 17.37

17.37 _< t

(7.25)

Figure 7.8 shows the desired pitch rate.

CSMC is applied to maneuvers from low angle of attack to high angle of attack and vice versa.

For example, from initial ot = 4.3 ° to c_ = 60* and cx = 60 ° to ot = 5*. CSMC shows a fast response

(Figs 7.6-7.13). Angle of attack arrives at 55* approximately in 2.19 second and 59* in 2.6 second

approximately and approaches the final terminal state without overshoot. However, this control shows

a small overshoot for a maneuver from c_ = 60* to cx = 35*. This overshoot can be reduced by using

appropriate desired trajectories of angle of attack and pitch rate.
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7.4 Conclusion

An effective control design methodology using continuous sliding-mode control (CSMC) of a

highly nonlinear maneuverable high performance aircraft, the HARV (F-18), has been presented.

Although not shown here, our simulations show that with only horizontal stabilator control,

CSMC works very well without overshoot for maneuvers up to about et = 20 °. CSMC of the MIMO

longitudinal motion of HARV is demonstrated successfully by accurate computer simulations. Similarly,

Ostroff [7.39,7.40] investigated the maneuver by utilizing numerous trim-state linearization studies

accompanied by scheduled variable gain in PIF controller. CSMC shows, in particular, a fast response

from t_(to) = 4.3 ° to 55 ° in 2.19 see. and settling time to 60 ° in about 3 see. compared to the latter case,

which shows a rise time from et(to) to 55 ° in about 3.3 see. and settling time in about 6 see.

Accordingly, CSMC shows that it is very useful for the terminal approach to the high angle of attack

reducing overshooting and chattering of control even though control inputs are constrained physically.

The response using time-optimal control, of course, is faster, that is, the slightly faster as shown in

Section 3. Therefore, better results can be obtained if time-optimal control is used for the fast response

in the first stage, and CSMC used for driving output to the final terminal value without overshoot and

keeping it in the neighborhood of the sliding surface. CSMC also shows some robustness to parameter

uncertainty and disturbance with the known bounds. This is accompanied by a boundary layer in the

neighborhood of the sliding surface and adjusting the reachable speed within it so that less chattering of

control results for the system with constrained inputs.
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8. CONCLUSIONS AND DIRECTIONS

Much more was accomplished with respect to high-performance aircraft control by this project

than was originally proposed. However, less was accomplished on stability methodology development

than anticipated. Although, it is apparent that stability criteria, such as those desired for bilinear systems

with nonlinear feedback [8.1], can be applied to the aircraft dynamics with feedback, we were not able

to find relevant practical design criteria in the time allowed. Unfortunately, the desired sufficient

conditions are overly constraining. On the other hand, a new linear perturbation study was made for a

second-order short-period model with a range of admissible feedback gains derived in conjunction with

that model. This result is reported in our Phase 2 Annual Report [8.2].

The research presented here does show the potential role of nonlinear control for high

performance aircraft. Indeed, the time-optimal and quadratic-optimal controls investigated make full use

of nonlinear dynamics, as shown in Section 3. Nonlinear adaptive controls (Sections 4 and 5), neural-net

controls (Section 6), and sliding-mode controls (Section 7), all use nonlinear feedback to effectively

control, in many cases nearly optimally, the nonlinear longitudinal aircraft motion [8.3].

The neural-net-based nonlinear feedback control was trained according to simulated optimal flight

trajectories in Section 4. Unfortunately, the lengthy computations can not be accomplished on-line with

present technology. Still, if used in conjunction with more classical on-line feedback control, such

intelligent controls could be effective in a practical sense. Other nonlinear adaptive schemes (Sections

5 and 6) can be done in real time, but do depend on sufficient disturbance (naturally or in terms of

persistent self-excitation). In some cases such excitation may not be available or not tolerated and, again,

off-line nlearning" may be used.

The tradooffs between on-line and off-line computations, between natural and self-excitation,

between robustness and optimal performance all need to be investigated in more detail. Convenience to

the pilot in using the controllers also needs to be studied.

Perhaps of immediate interest for controller, and even aircraft and engine configuration design,

is the optimization analysis and the developed optimization software. This methodology and

corresponding software can provide information on the most performance sensitive design parameters and

constraints as well as providing precise control and performance data.
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APPENDIX B

Equations of Motion and Aerodynamic Model



from the basic six degrees of freedom equations of a rigid body.

stability derivatives will also be presented.

EQUATIONS OF MOTION AND AERODYNAMIC MODEL

Introduction and Notation

In the following the equations of motion of an airplane in the longitudinal mode will be derived

The curve fitting technique for the

Coordinate System

Figure B. 1 depicts the body axes coordinate system used in this work.

Figure B. 1. Coordinate System (body axes)

XYZ: Aerodynamic forces in Xb, Yb, Zb directions

FR, FQ, FP: Aerodynamic moments in Xb, Yb, Zb

The aerodynamic lift and drag forces are defined in Fig. B. 1. Also, the flight path angle (3'),

pitch angle (0), and angle of attack (c0 are related, as shown in Fig. B. 1.

The side slip angle/_ is the angle between V T (the velocity vector) and the XbZ b plane. Angle

of attack, _, is the angle between the projection of V t on the XbZ b plane and X b.
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Thefollowingrelationsaredef'med

V 2 = u 2 ÷ v 2 ÷ w 2

(B.1)

Nomenclature

b,b'

c.g.

Cij

Cm

CD

eL

D

Fx, Fy, Fz

FP, FQ, FR

g

h

L

,exg, lye, ezg

ex, ey, t z

M

m

P

q

-4
r

S

Ty,

reference length for lateral derivative (span, ft)

reference length for stability derivatives (MAC, ft)

center of mass (gravity)

coefficients, functions of moments of inertia, Ixx, Iyy, Izz,Ixz

pitching moment coefficient

drag coefficient

lift coefficient

drag force (lb)

external force components 0b)

angular acceleration components 0b-ft)

gravitational acceleration (ft/sec 2)

altitude (ft)

principal moments of inertia (slugs-ft a)

cross product of inertia (slugs-ft 2)

lift force (lb)

position vector from e.g. to engine thrust center (ft)

position vector from e.g. to aerodynamic center (ft)

math number

external moment components 0b-ft)

aircraft mass (slug)

roll rate (rad/sex:)

pitch rate (rad/sec)

dynamic pressure 0b/ft 2)

yaw rate (rad/sec)

reference area ((wing area) ft2)

engine thrust components (lb)
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U

V

W

X,Y,Z

velocity component in x b direction (It/see)

velocity component in Yb direction (It/see)

velocity component in zb direction (it/see)

force components in Xb, Yb, Zb directions (Ib)

Ot

3'

O,¢+,+

P

6h, 6a, _r

0

Sr

angle of attack (tad or degree)

angle of side slip (rad or degree)

flight path angle (rad or degree)

Euler angles (pitch, yaw, roll) (rad)*

air density (slug/it 3)

deflection angles of stabilator, ailerons, and rudder (-)

standard atmosphere density ratio

throttle setting (.)

B.2 General Equations of Motion (GDOF)

The general, GDOF equations of motion derived from Newtons laws are given in many

references. The form used in [B. 1] is shown here for the force and moment equations and in []3.2] for

the Euler equations.

Force Equations

F x = m(ti-vr +wq)

E Fy = m(9-wp +ur)

E F z = m (g,- uq + vp)

(B.2)

Moment Equations

M x = p Ixx - i"Ixz + (Izz - Iyy) qr - pq Ixz

E My : _lIyy + rP_xx-Izz) + _32-r2)Ixz

E Mz -- tIzz - I_Ixz + (Iyy - Ixx ) pq + Ixz qr

(B.3)

*Get order of rotations: yaw, pitch, roll
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Euler Equations

= qcos_ - rsin_

= p + qsin_tgO+ rcos_tgO

= (qsin_ +rcos _)secO

03.4)

Here the aircraft is treated as a rigid, symmetrical body (so only the Ixz cross product exits); also (j mean

d/(dt) the time derivative.

The GDOF equations can be written in terms of u, v, w and Dyr [B.3].

Force Equations (body axes)

T X

fl =rv - qw - gsin0 + X +
m

T_
v = pw - ru + gcosOsin$ + Y +

m

T Z

w = qu - pv + gcos0costk + Z + m
m

03.5)

Moment Equations (body axes)

C43 tl T - Tx ) + C *
I_ = C41 pg + C42 qr + C43 FR + C * FP + -_=_ zt y gyt I---_-(eye Tz - gze Ty)

+ 1
q = CslPr + C52(r2-p 2) + FQ .-_(eztTx-extTz)

f = C61 pq + C62 qr + C63 FP + C * FR + C63 C * Tx )
I-'-_"(gy' Tz - exe Ty) + I--'_ (exe Ty - ey e

The three Euler equations 03.4) remain unchanged.

03.6)
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In theseequations

and

X = [-D cos _x + L sin ot]/m

Z = [-D sin o_ - L cos a]/m

Y = qS Cy/m

(normal aerodynamic acceleration)

(axial aerodynamic acceleration)

(aerodynamic side acceleration)

L = qSC L (lift) D = qSC D (drag)

(B.7)

The aerodynamic accelerations are

FP = [qSbC' + m(eyZ-ezY)l/Ixx

FQ = [qScCm +m(ezX- ,xZ)]/Iyy

(rolling)

(pitching)

(yawing)

(B.8)

Note that reference length for roll and yaw is b (wing span) and for pitch is c, mean aerodynamic chord

(MAC).

The inertia moments are assumed to be constant and their coefficients are defined as follows

C . __ C4o = Ixx" I=/(IxxI=-I 2)

C41 : C* Ixz_zz+Ixx-Iyy)/IxxIzz

C42 = C * [Izz Qyy - I=) - I2] / Ixx Ixz

C43 -- C * Ixz I Ixx

C51 = (Izz - Ixx) / Iyy

C52 = It.z/Iyy

C61 = C * [IxxOxx - Iyy)"I2] / IxxI=

C62 = C * Ixzgyy-lzz-Ixx)/Ixxlzz

C63 = C "1=/122

03.9)
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B.3 Form of Aerodynamic Coefficients (Stability Derivatives)

The aerodynamic coefficients, also called stability derivatives, are written in the following form:

Drag Coefficient

Lift Coefficient

Pitching Moment

C D = CDo (ot,M,h,6h)

C L = CLo(a,M,h, 6h) + _-_[CLq(a,M,h) q +CL_ (a,M,h)&]

Cm = Cmo(_,M,h,dih ) + ___[Cmq(a,M,h)q +Cma (_,M,h)S]

(B.9)

The aerodynamic coefficients CDo , CLo, Cmo depend on angle of attack, c_, mach, M, altitude, h, and

control surface angles, (5, (which are the controlling factor). The damping coefficients CLq, CL, _, Cmq ,

Cma are dependent on o_, M, h but not functions of 6.

B.4 Equations of Motion for the Longitudinal Mode

The case in which the airplane moves without side slip and rolling motion is called the

longitudinal mode. In this the motion is restricted to a plane containing the XbZ b plane. For this case

we may make the following assumptions.

3, 3, v, p, r, _, _b will all be zero identically

The equation for longitudinal motion, based on (B.5) and (B.6) are

fi
T x

= -qw-gsinO +X +
m

03.10)

Tz (B.11)
_¢ =qu +gcosO +Z+--

m

+ (m(ezX-exZ)+ezeTx-exeTz)/I.
qScC m

Iyy

and the remaining Euler equation (B.4)

_=q

It is more convenient to select state variables or, V, q, 0, instead of u, w, q, 0 (B.4).

(B.12)
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Using the relationship (Fig. B-4, fl = 0)

U = V cos ot

W = Vsint_

and V 2 = u 2 + w 2

By taking derivatives with respect to time, we get

u_' - _w V & + sina ft.
& - =,. #¢ = (B.13)

V 2 cos a

Using the expression for _, in (B. 11), after some algebraic manipulation, we get the equation for &:

g rx Tz& = q + (cosOcosa + sinOsincO - L _ sina + _cosa
mV mV mV

In a similar fashion we derive expressions for _r, q, and 0:

Tx TzQ = -g sinOcosa + g sino_cos0 _ __D+ _ cosct+ sinot
m m m

L (ezsina+t xCOsot) + 1 T (B 13)
q = qScCmlyy + D(-ezCOs +exsin )l. + T- (ezerx-exe z) "

0=q

By substitution of the form of aerodynamic COefficients 03.9) and defining

qll = -tz COscz + t x Sin ot

q12 = ez sin o_ + ex cos c_

03.14)

and some more simple algebra, we get

1 /[1 s cL,]
1 +p Sc 4m

CLa

SCL o
g COs7-q_ +

q +V mV

Tx Tz }_ sino_+ _ cosot
mV mV

03.15")
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_/ = -g sin3,- _ S Tx Tz
m-- CDo + m coscz + -- sinr_m m

2Iyy tyy

+ P Sc(cCm_ + q12 CL_) { pS_

4I-_ [i :_CLa _ [1- 4_ CLq} g

COS 7 -
pSCL° V - Tx sinot

2m mV

_)=q

+ Tz coso t

mV
V 4-

tztTx - txeTz

Iyy

These are the four equations of motion used in this work.

(B.15)

B.5 Values of Constants and Aerodynamic Coefficients

The values of the various constants for this airplane were taken from [13.4].

Constants:

aircraft

mass

weight

moments of inertia:

wing area

MAC

wing span

geometry

-- McDonnel-Douglas F-18 Fighter

m = 1035.308 slugs

w = 33,310 lb

Ixx = 23,000 slug-ft 2

Iyy = 151,293 slug'R 2

Izz = 169,945 slug'R 2

Ixz = -2,971 slugs-ff 2

s = 4oo ft2

= 11.52 R

b = 37.42 ft

ex = -0.297R

ey = 0

gz = 0.233 ft
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dynamic pressure

air density

txt = -19.37 ft

ey e = 0

eze = 0.233 ft

= I12 p V 2

p = 0.0023709 a

Aerodynamic Coefficients

Reference [I3.4] gives the aerodynamic coefficients for this aircraft in the form of curve fits to

wind tunnel data. Values are given for the following range of parameters:

angle of attack -100 < ot < 90 °

side slip -20 ° < /_ < 20 °

math number 0.2 < M < 2

altitude 0 < h < 60,000 ft

aileron deflection -25 ° < 6a < 25

rudder deflection -30 ° < f < 30 °

stabilator deflection -24 ° < _h < 10.5 °

throttle setting 30 ° (idle) < b r < 131 ° (full afterburner)

The coefficients are given in the form of piecewise arc tangent functions for discrete values of

the parameters. Interim values are then interpolated.

Example:

CMo - pitching moment in Eq. (B.9):

CMo(a,M = 0.6, cSh = 10.5 °, h = 15,000 ft) = CMo X 6 (c0

CMo X 6 (or) = (.26/2.75) tan -1 (-(a°-5) 1/10) + (-.39/2.75) tan -1 ((a°-l) 1/8)

+ (.8/2.75)tan 1 ((a*-5) 1/13) + (.70/2.75)tan 1 (-(a*-10) 1/65)

+ (1.2/2.75)tan "1 (ot*-49) 1/15) + (2.1/2.75)tan -1 (-(-a°-69) 1/15)

+ (-.45/2.75) tan -1 (-(a0-77) 1/2) - 3.98

Similar expressions are given for all the other relevant aerodynamic coefficients. This data is

sufficient for the longitudinal case and also for small lateral angles. Ref. [13.4] also shows the accuracy

of the curve filled data by comparing it to the actual wind tunnel results. In most cases the agreement

between the curve filled and actual data is excellent. Small deviations can be expected in the high angle

of attack range (_ > w-700).
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The values of the aerodynamic coefficients are given for the following range of parameters:

CDo 6h = 10.5 °, 0 °, -5 °, -24 ° ]

CLo h= 15k' 5h= 10.5 ° M=0.6,0.9 ] -10° < c_ < 90 °_Sh = -24 ° M = 0.6, 0.9

CLq M = 0.6 h = 15 k'

CL a M = 0.6 h = 15k'

Cmo M = 0.6, 0.9 _Sh= 10.5 °, 5 °, 2*, 0", -5 °, -12.5 °, -24 °

Cm,t M = 0.6 h = 15 k'

Cma M = 0.6 h = 15 k'

h = 15 k'

Further aerodynamic data can be found in Ref. [13.5] and [B.6] (manufacturers data) and several

more reports which are in our hands.

B.6 Future Developments

The method of derivation for the equations of motion shown here can be used for the lateral mode

also. In order to check the longitudinal controllers which were developed and to develop lateral

controllers (if necessary) for combined pitch, yaw, and roll maneuvers which are needed in modern air

combat, it will be necessary to develop a GDOF aerodynamic model, including GDOF equations of

motion. This will be done gradually, by first constraining the lateral movements to small side slip angles,

as was done by several references -- for example, Safanov [B.7] discussing the Herbst lB.5] maneuver

and Ostroff [B.9]. One can do this in two ways -- either develop the full GDOF equations, from [B.5]

and [B.6], and add a small/_ constraint to the result, or use the small constraint from the beginning to

get a somewhat simpler equation system, and move on to the full case later on. For the full GDOF case

the data given in [B.4] must be widened by using the full data available in [B.5] and [B.6]. The group

has already done preliminary work in this direction. A convenient method for showing results on real

time simulations is given in Ref. [B. 10]. This method uses spherical mapping to transform the various

angular relations to a two-dimensional plane. Future lateral results may be displayed in this form.
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